February 29, 2012 , In Solar Power, with permission from LANDGENERATOR
The
history of renewable energy is fascinating. We posted a while back about
early efforts to harness the power of waves. You may also be interested to learn more about the
19th century work of Mouchot and Ericsson, early pioneers of solar thermal
concentrators (CSP solar thermal power).
Early schematics of Augustin Mouchot’s Solar Concentrator.
Augustin Mouchot taught
secondary school mathematics from 1852-1871, during which time he embarked on a
series of experiments in the conversion of solar energy into useful work. His proof-of-concept
designs were so successful that he obtained support from the French government
to pursue the research full-time. His work was inspired and informed by that of Horace-Bénédict de
Saussure(who had constructed the first successful solar oven in
1767) and Claude Pouillet (who
invented the Pyrheliometer in
1838).
Augustin Mouchot’s Solar Concentrator at the Universal Exhibition in Paris, 1878.
Mouchot
worked on his most ambitious device in the sunny conditions of French Algeria
and brought it back for demonstration at the Universal Exhibition in
Paris of 1878. There he won the Gold Medal, impressing the
judges with the production
of ice from the power of the sun.
Unfortunately,
the falling price of coal, driven by efficiencies of transport and free trade agreements
with Britain, meant that Mouchot’s work would soon be deemed
unnecessary and his funding was cut soon after his triumph at the Universal
Exhibition.
Abel Pifre and his solar powered printing press. Image from Scientific American, May 1882.
His
assistant, Abel Pifre,
would continue his work, however, and demonstrated a solar powered printing
press in the Jardin des Tuileries in 1882. Despite cloudy conditions that day,
the machine printed 500 copies per hour of Le Journal du
Soleil, a newspaper written specially for the demonstration.
John Ericsson’s Solar Engines
Meanwhile,
the great inventor and engineer John Ericsson had
decided to devote the last years of his life to similar pursuits. His work on
solar engines spanned the 1870s and 1880s. Instead of relying on steam, he
utilized his version of the heat engine, a
device that would prove very commercially successful when powered with more
conventional fuel sources such as gas.
“You
will probably be surprised when I say that the sun-motor is nearer perfection
than the steam-engine,” [Ericsson] wrote one friend, “but until coal mines are
exhausted its value will not be fully acknowledged.” He calculated that solar
power cost about ten times as much as coal, so that until coal began to run
out, solar power would not be economically feasible. But this, to him, was not
a sign of failure—there was no question that fossil fuels would indeed run out
someday.
The
great engineer maintained an unshakeable belief in the future of solar power to
his last breath; he had set up a large engine in his backyard and was still
perfecting it when he collapsed in early 1889. Though his doctor made him rest,
Ericsson could not sleep at night: he complained that he could not stop
thinking about his work yet to be done.
Both
Mouchot and Ericsson were driven by the prescient understanding that access to
coal, the predominant fossil fuel of the time, would eventually run out. And
while, new discoveries of petroleum and natural gas have extended our
inexpensive access to energy, we are finally now, 140 years later, reaching a
time when their predictions are coming true. For the wisdom behind the premise
is still as valid today as it was then—nothing that is finite can last forever.
These inventors were so far ahead of their time, it is almost scary.
Originally posted on the Archdruid Report now https://www.ecosophia.net/ by John Michael Greer, March 2014. Reprinted with permission of the author.
I have yet to hear anyone in the peak
oil blogosphere mention the name of Captain Gustaf Erikson of the Åland
Islands and his fleet of windjammers. For all I know, he’s been
completely forgotten now, his name and accomplishments packed away in the same
dustbin of forgotten history as solar steam-engine pioneer Augustin Mouchot,
his near contemporary. If so, it’s high time that his footsteps sounded again
on the quarterdeck of our collective imagination, because his story—and the
core insight that committed him to his lifelong struggle—both have plenty to
teach about the realities framing the future of technology in the wake of
today’s era of fossil-fueled abundance.
Erikson, born in 1872, grew up in a
seafaring family and went to sea as a ship’s boy at the age of nine. At 19 he
was the skipper of a coastal freighter working the Baltic and North Sea ports;
two years later he shipped out as mate on a windjammer for deepwater runs to
Chile and Australia, and eight years after that he was captain again, sailing
three- and four-masted cargo ships to the far reaches of the planet. A bad fall
from the rigging in 1913 left his right leg crippled, and he left the sea to
become a ship owner instead, buying the first of what would become the 20th
century’s last major fleet of wind powered commercial cargo vessels.
It’s too rarely remembered these days
that the arrival of steam power didn’t make commercial sailing vessels obsolete
across the board. The ability to chug along at eight knots or so without
benefit of wind was a major advantage in some contexts—naval vessels and
passenger transport, for example—but coal was never cheap, and the long
stretches between coaling stations on some of the world’s most important trade
routes meant that a significant fraction of a steamship’s total tonnage had to
be devoted to coal, cutting into the capacity to haul paying cargoes. For bulk
cargoes over long distances, in particular, sailing ships were a good deal more
economical all through the second half of the 19th century, and some runs
remained a paying proposition for sail well into the 20th.
That was the niche that the
windjammers of the era exploited. They were huge—up to 400 feet from stem to
stern—square-sided, steel-hulled ships, fitted out with more than an acre of
canvas and miles of steel-wire rigging. They could be crewed by a
few dozen sailors, and hauled prodigious cargoes: up to 8,000 tons
of Australian grain, Chilean nitrate—or, for that matter, coal; it was among
the ironies of the age that the coaling stations that allowed steamships to
refuel on long voyages were very often kept stocked by tall ships, which could
do the job more economically than steamships themselves could. The markets
where wind could outbid steam were lucrative enough that at the beginning of
the 20th century, there were still thousands of working windjammers hauling cargoes
across the world’s oceans.
That didn’t change until bunker oil
refined from petroleum ousted coal as the standard fuel for powered ships.
Petroleum products carry much more energy per pound than even the best grade of
coal, and the better grades of coal were beginning to run short and rise
accordingly in price well before the heyday of the windjammers was over. A
diesel-powered vessel had to refuel less often, devote less of its tonnage to
fuel, and cost much less to operate than its coal-fired equivalent. That’s why
Winston Churchill, as head of Britain’s Admiralty, ordered the entire British
Navy converted from coal to oil in the years just before the First World War,
and why coal-burning steamships became hard to find anywhere on the seven seas
once the petroleum revolution took place. That’s also why most windjammers went
out of use around the same time; they could compete against coal, but not
against dirt-cheap diesel fuel.
Gustav Erikson went into business as
a ship owner just as that transformation was getting under way. The rush to
diesel power allowed him to buy up windjammers at a fraction of their former
price—his first ship, a 1,500-ton bark, cost him less than $10,000, and the
pride of his fleet, the four-masted Herzogin Cecilie, set him back
only $20,000. A tight rein on operating expenses and a careful eye
on which routes were profitable kept his firm solidly in the black. The bread
and butter of his business came from shipping wheat from southern Australia to
Europe; Erikson’s fleet and the few other windjammers still in the running
would leave European ports in the northern hemisphere’s autumn and sail for
Spencer Gulf on Australia’s southern coast, load up with thousands of tons of
wheat, and then race each other home, arriving in the spring—a good skipper
with a good crew could make the return trip in less than 100 days, hitting
speeds upwards of 15 knots when the winds were right.
There was money to be made that way,
but Erikson’s commitment to the windjammers wasn’t just a matter of profit. A
sentimental attachment to tall ships was arguably part of the equation, but
there was another factor as well. In his latter years, Erikson was fond of
telling anyone who would listen that a new golden age for sailing ships was on
the horizon: sooner or later, he insisted, the world’s supply of
coal and oil would run out, steam and diesel engines would become so many lumps
of metal fit only for salvage, and those who still knew how to haul freight
across the ocean with only the wind for power would have the seas, and the
world’s cargoes, all to themselves.
Those few books that mention Erikson
at all like to portray him as the last holdout of a departed age, a man born
after his time. On the contrary, he was born before his time, and lived too soon.
When he died in 1947, the industrial world’s first round of energy crises were
still a quarter century away, and only a few lonely prophets had begun to grasp
the absurdity of trying to build an enduring civilization on the
ever-accelerating consumption of a finite and irreplaceable fuel supply. He had
hoped that his sons would keep the windjammers running, and finish the task of
getting the traditions and technology of the tall ships through the age of
fossil fuels and into the hands of the seafarers of the future. I’m sorry to
say that that didn’t happen; the profits to be made from modern freighters were
too tempting, and once the old man was gone, his heirs sold off the windjammers
and replaced them with diesel-powered craft.
Erikson’s story is worth remembering,
though, and not simply because he was an early prophet of what we now call peak
oil. He was also one of the very first people in our age to see past the
mythology of technological progress that dominated the collective imagination
of his time and ours, and glimpse the potentials of one of the core strategies
this blog has been advocating for the last eight years.
We can use the example that would
have been dearest to his heart, the old technology of windpowered maritime
cargo transport, to explore those potentials. To begin with, it’s crucial to
remember that the only thing that made tall ships obsolete as a transport
technology was cheap abundant petroleum. The age of coal-powered steamships
left plenty of market niches in which windjammers were economically more viable
than steamers. The difference, as already noted, was a matter of
energy density—that’s the technical term for how much energy you get out of
each pound of fuel; the best grades of coal have only about half the energy
density of petroleum distillates, and as you go down the scale of coal grades,
energy density drops steadily. The brown coal that’s commonly used
for fuel these days provides, per pound, rather less than a quarter the heat
energy you get from a comparable weight of bunker oil.
As the world’s petroleum reserves
keep sliding down the remorseless curve of depletion, in turn, the price of
bunker oil—like that of all other petroleum products—will continue to move
raggedly upward. If Erikson’s tall ships were still in service, it’s quite
possible that they would already be expanding their market share; as it is,
it’s going to be a while yet before rising fuel costs will make it economical
for shipping firms to start investing in the construction of a new generation of
windjammers. Nonetheless, as the price of bunker oil keeps rising,
it’s eventually going to cross the line at which sail becomes the more
profitable option, and when that happens, those firms that invest in tall ships
will profit at the expense of their old-fahioned, oil-burning rivals.
Yes, I’m aware that this last claim
flies in the face of one of the most pervasive superstitions of our time, the
faith-based insistence that whatever technology we happen to use today must
always and forever be better, in every sense but a purely sentimental one, than
whatever technology it replaced. The fact remains that what made diesel-powered
maritime transport standard across the world’s oceans was not some abstract
superiority of bunker oil over wind and canvas, but the simple reality that for
a while, during the heyday of cheap abundant petroleum,
diesel-powered freighters were more profitable to operate than any of the other
options. It was always a matter of economics, and as petroleum depletion
tilts the playing field the other way, the economics will change accordingly.
All else being equal, if a shipping
company can make larger profits moving cargoes by sailing ships than by diesel
freighters, coal-burning steamships, or some other option, the sailing ships will
get the business and the other options will be left to rust in port. It really
is that simple. The point at which sailing vessels become economically viable,
in turn, is determined partly by fuel prices and partly by the cost of building
and outfitting a new generation of sailing ships. Erikson’s plan was to do an
end run around the second half of that equation, by keeping a working fleet of
windjammers in operation on niche routes until rising fuel prices made it
profitable to expand into other markets. Since that didn’t happen, the lag time
will be significantly longer, and bunker fuel may have to price itself entirely
out of certain markets—causing significant disruptions to maritime trade and to
national and regional economies—before it makes economic sense to start
building windjammers again.
It’s a source of wry amusement to me
that when the prospect of sail transport gets raised, even in the greenest of
peak oil circles, the immediate reaction from most people is to try to find
some way to smuggle engines back onto the tall ships. Here again, though, the
issue that matters is economics, not our current superstitious reverence for
loud metal objects. There were plenty of ships in the 19th century that
combined steam engines and sails in various combinations, and plenty of ships
in the early 20th century that combined diesel engines and sails the same
way. Windjammers powered by sails alone were more economical than
either of these for long-range bulk transport, because engines and their fuel
supplies cost money, they take up tonnage that can otherwise be used for paying
cargo, and their fuel costs cut substantially into profits as well.
For that matter, I’ve speculated in
posts here about the possibility that Augustin Mouchot’s solar steam engines, or
something like them, could be used as a backup power source for the windjammers
of the de-industrial future. It’s interesting to note that the use of renewable
energy sources for shipping in Erikson’s time wasn’t limited to the motive
power provided by sails; coastal freighters of the kind Erikson skippered when
he was nineteen were called “onkers” in Baltic Sea slang, because their
windmill-powered deck pumps made a repetitive “onk-urrr, onk-urrr” noise.
Still, the same rule applies; enticing as it might be to imagine sailors on a
becalmed windjammer hauling the wooden cover off a solar steam generator,
expanding the folding reflector, and sending steam down belowdecks to drive a
propeller, whether such a technology came into use would depend on whether the
cost of buying and installing a solar steam engine, and the lost earning
capacity due to hold space being taken up by the engine, was less than the
profit to be made by getting to port a few days sooner.
Are there applications where engines
are worth having despite their drawbacks? Of course. Unless the price of
biodiesel ends up at astronomical levels, or the disruptions ahead along the
curve of the Long Descent cause diesel technology to be lost entirely, tugboats
will probably have diesel engines for the imaginable future, and so will naval
vessels; the number of major naval battles won or lost in the days of sail
because the wind blew one way or another will doubtless be on the minds of many
as the age of petroleum winds down. Barring a complete collapse in technology,
in turn, naval vessels will no doubt still be made of steel—once cannons
started firing explosive shells instead of solid shot, wooden ships became
deathtraps in naval combat—but most others won’t be; large-scale steel
production requires ample supplies of coke, which is produced by roasting coal,
and depletion of coal supplies in a postpetroleum future guarantees that steel
will be much more expensive compared to other materials than it is today, or
than it was during the heyday of the windjammers.
Note that here again, the limits to
technology and resource use are far more likely to be economic than technical.
In purely technical terms, a maritime nation could put much of its arable land
into oil crops and use that to keep its merchant marine fueled with biodiesel.
In economic terms, that’s a nonstarter, since the advantages to be gained by it
are much smaller than the social and financial costs that would be imposed by
the increase in costs for food, animal fodder, and all other agricultural products.
In the same way, the technical ability to build an all-steel merchant fleet
will likely still exist straight through the de-industrial future; what won’t exist is the ability to do
so without facing prompt bankruptcy. That’s what happens when you have to live
on the product of each year’s sunlight, rather than drawing down half a billion
years of fossil photosynthesis: there are hard economic limits to
how much of anything you can produce, and increasing production of one thing
pretty consistently requires cutting production of something else. People in
today’s industrial world don’t have to think like that, but their descendants
in the de-industrial world will either
learn how to do so or perish.
This point deserves careful study, as
it’s almost always missed by people trying to think their way through the
technological consequences of the de-industrial future. One reader of mine who objected to
talk about abandoned technologies in a previous post quoted with approval the
claim, made on another website, that if a de-industrial society can make one gallon of biodiesel, it
can make as many thousands or millions of gallons as it
wants. Technically, maybe; economically, not a
chance. It’s as though you made $500 a week and someone claimed you
could buy as many bottles of $100-a-bottle scotch as you wanted; in any given
week, your ability to buy expensive scotch would be limited by your need to
meet other expenses such as food and rent, and some purchase plans would be out
of reach even if you ignored all those other expenses and spent your entire
paycheck at the liquor store. The same rule applies to societies that don’t
have the windfall of fossil fuels at their disposal—and once we finish burning
through the fossil fuels we can afford to extract, every human society for the
rest of our species’ time on earth will be effectively described in those
terms.
The one readily available way around
the harsh economic impacts of fossil fuel depletion is the one that Gunnar
Erikson tried, but did not live to complete—the strategy of keeping an older
technology in use, or bringing a defunct technology back into service, while
there’s still enough wealth sloshing across the decks of the industrial economy
to make it relatively easy to do so. I’ve suggested above that if
his firm had kept the windjammers sailing, scraping out a living on whatever
narrow market niche they could find, the rising cost of bunker oil might
already have made it profitable to expand into new niches; there wouldn’t have
been the additional challenge of finding the money to build new windjammers
from the keel up, train crews to sail them, and get ships and crews through the
learning curve that’s inevitably a part of bringing an unfamiliar technology on
line.
That same principle has been central
to quite a few of this blog’s projects. One small example is the encouragement
I’ve tried to give to the rediscovery of the slide rule as an effective
calculating device. There are still plenty of people alive today who know how
to use slide rules, plenty of books that teach how to crunch numbers with a
slipstick, and plenty of slide rules around. A century down the line, when
slide rules will almost certainly be much more economically viable than pocket
calculators, those helpful conditions might not be in place—but if people take
up slide rules now for much the same reasons that Erikson kept the tall ships
sailing, and make an effort to pass skills and slipsticks on to another
generation, no one will have to revive or reinvent a dead technology in order
to have quick accurate calculations for practical tasks such as engineering,
salvage, and renewable energy technology.
The collection of sustainable-living
skills I somewhat jocularly termed “green wizardry,” which I learned back in
the heyday of the appropriate tech movement in the late 1970s and early 1980s,
passed on to the readers of this blog in a series of posts a couple of years
ago, and have now explored in book form as well, is another case in point. Some of
that knowledge, more of the attitudes that undergirded it, and nearly all the
small-scale, hands-on, basement-workshop sensibility of the movement in
question has vanished from our collective consciousness in the years since the
Reagan-Thatcher counterrevolution foreclosed any hope of a viable future for
the industrial world. There are still enough books on appropriate tech
gathering dust in used book shops, and enough in the way of living memory among
those of us who were there, to make it possible to recover those things;
another generation and that hope would have gone out the window.
There are plenty of other
possibilities along the same lines. For that matter, it’s by no means
unreasonable to plan on investing in technologies that may not be able to
survive all the way through the decline and fall of the industrial age, if
those technologies can help cushion the way down. Whether or not it will still
be possible to manufacture PV cells at the bottom of the de-industrial dark
ages, as I’ve been pointing out since
the earliest days of this blog,
getting them in place now on a home or local community scale is likely to pay
off handsomely when grid-based electricity becomes unreliable, as it
will. The modest amounts of electricity you can expect to get from
this and other renewable sources can provide critical services (for example,
refrigeration and long-distance communication) that will be worth having as the
Long Descent unwinds.
That said, all such strategies depend on having
enough economic surplus on hand to get useful technologies in place before the
darkness closes in. As things stand right now, as many of my readers will have
had opportunity to notice already, that surplus is trickling away. Those of us
who want to help make a contribution to the future along those lines had better
get a move on.
Melding 19th and 21st Century
Technologies for Waterborne Freight and Passenger Transport
Our world is now convulsed by three great converging crises: climate change, global economic instability, and peak everything. Add to these principal threats the risks of wars over natural resources, climate migration, the total failure of aging and over stressed infrastructure, and the erosion of traditional community values. Each of these crises presents particularly thorny problems for the New York City Metropolitan area and the Hudson Valley Bio-region.
Our region is at a crossroads. Looking
forward rationally at all the indicators, the “business as usual” choice takes
us down a road to cataclysmic energy shortages and infrastructure failure, to
inundation from sea level rise, to financial meltdown and its attendant social
disarray.
There are four possible response strategies:
Denial – waiting and hoping that some unforeseen miracle will solve the problem
Last One Standing – global competition and warfare to control all remaining resources;
Power Down down – global cooperation to reduce energy use, conserve and manage resources, while reducing population; and
Today the far-flung international trade network that once pumped vibrant economic life into the region threatens to collapse as imported natural resources, pollution from shipping, and the fossil fuels needed to transport goods will soon become increasingly scarce and expensive. Higher petroleum costs, and turmoil in countries in which much of our imported goods are made could snap that lifeline. The present system is unsustainable.
The rivers, bays, canals, and coasts of the Hudson Valley, NY Harbor,
and Mid-Atlantic continue to be a marine highway, but one that is limited to
deeply dredged channels leading to container ports and fossil fuel and chemical
tank farms. Traffic consists of the movement of consumer goods,
automobiles, and spirits from around the world on large ocean going fossil
fueled container ships to ports where the containers are loaded onto trucks for
delivery to warehouses for distribution in a “just in time” logistics
system.
Moving goods and people from place to place in a carbon constrained future will be dependent on sailing vessels, hybrid/fossil free electric ships, and people, bicycle, and animal powered transport for first and last mile logistics. These methods of transport will meld 19th and 21st Century Technology. Ships will be (re)built locally from locally sourced or recycled materials and will be crewed by locally trained seafarers. The ships will provide a carbon neutral trading link, will be a laboratory for innovation and competitiveness, will be commercially competitive with conventional fossil fuel transport in certain markets, will operate on reliable schedules (dependent on tide, wind, and weather), and offer competitive freight rates on appropriate routes.
This executive summary of a monologue in support of the Center for Post Carbon Logistics (The Center) includes a plan for Hudson Valley/Mid-Atlantic river bay, coastal, and ocean shipping of fair trade cargo. The time is right and an opportunity exists now to reinvent and profit from low carbon cargo delivery. Post carbon ships have many advantages over larger oil powered cargo ships. Sailing and alternative fuel freighters can locally promote:
job creation in farming,
logistics, ship building and maintenance among others
Revitalization of
waterfront communities by preserving the working waterfront and commercial
enterprises, while providing more public access, and recreation.
Food production and distribution, and connecting
producers to buyers
The mission of the Center for Post Carbon Logistics is to provide the pragmatic means to survive the decades ahead and to provide the tools to transition to a more resilient, equitable, and sustainable world. The Center will do so by providing individuals and communities with no-nonsense methods of transitioning away from the use of fossil fuels for transporting goods and passengers. The Center will research and assist in the implementation of appropriate or Slow Technology[1] needed to respond to the inevitable equity, economic, ecological, and energy crises of the 21st century.
The idea of Slow Technology or “Slow Tech” has its roots in the ideological movement called “appropriate technology,” a term coined by E.F. Schumacher in his book Small is Beautiful, first published in 1973. Slow Tech should be thoughtful about how devices shape our relationships to time, emotion, energy, and bioregional environment.
The Center will house a widely
accessible traditional knowledge data base, library, and a pre/post carbon
tool, technology, and machinery collection.
The Center will promote Slow
Technology
The Center will be an advocate for
existing and emerging low carbon shipping and post carbon transportation
businesses..
The Center will provide educational
opportunities and creative, implementable, real world solutions to the
environmental, economic, and social crises we are likely to face in the near
and mid-term future.
The Center will enable people to work
locally to transition our communities and bioregion away from a fossil
fuel-based economy to a “restorative economy,” one that is human-scaled,
embraces alternative locally based energy, and that is less extractive.
The Center will host regional,
national, and international conferences on post carbon logistics and sail
freight and will be an advocate for working waterfronts throughout the Canals,
the Hudson Valley, NY Harbor, and the Atlantic Coast.
The Center will partner with other
enterprises and organizations to provide a physical place where professional
practitioners and apprentices can participate in theory and practice workshops
for preserving the skills of the past to serve the future.
The Center will advocate for a
Transition that people will embrace it as a collective adventure, as a common
journey, as something positive, and how communities can feel alive, positive
and included in this process of societal transformation. Paraphrasing the title
of Transition Town Rob Hopkins’ book, The Center for Post Carbon Logistics will
be the embodiment of the “Power of Just Doing Stuff.”
Kingston, NY as well as, every community along the Canals, the Hudson
River, NY Harbor and the North East US Coast will have to engage its collective
creativity to unleash an extraordinary and historic transition to a
future beyond fossil fuels; a future that is more vibrant, abundant and resilient; one that is
ultimately preferable to the present.