Category: Design

  • Comments on the Transportation Sector of the New York State Climate Action Council Draft Scoping Plan

    July 1, 2022

    Draft Scoping Plan Comments
    NYSERDA
    17 Columbia Circle
    Albany, NY 12203-6399

    scopingplan@nyserda.ny.gov

    Although these comments refer primarily to the Transportation Sector, we reserve the right to comment, in writing or in person, on the final version of the Scope of Work and any draft and final versions of the New York State Climate Action Plan and other documents, legislation, and regulations pertaining to the Climate Leadership and Community Protection Act of 2019 (CLCPA).

    The Center for Post Carbon Logistics (C4PCL) is a New York State non-profit organization that envisions a world of resilient, re-localized communities connected to one another through post carbon transport and logistics systems.[i] The Mission of The Center for Post Carbon Logistics is to research and assist in the implementation of appropriate post carbon maritime technology needed to keep commerce and transportation viable by responding to the interrelated connectivity, communication, equity, economic, ecological, and energy crises of the   21st Century. 

    Overview of the Scoping Plan and the Transportation Sector:

    The C4PCL agrees with and applauds the Council’s Benefits of Adaptation and Resilience and expects that the comments provided by the informed and engaged public will bolster the Council’s resolve to implement policies, programs, and projects to reach and exceed these aspirational goals in the short, mid, and long term.

    Adaptation and resilience planning is about protecting people and ecosystems from the changes caused by a changing climate. Individuals, communities, and regions have come to recognize the need to prepare for the risks posed to their quality of life, infrastructure, and physical safety by climate change. These risks are disproportionately high for Disadvantaged Communities. Investment in adaptation and resilience can improve quality of life, stimulate local economies, and protect the environment.

    Chapter 2. of the Scoping Plan lays out the impacts of climate change in New York.  The C4PCL agrees with the analysis of the impacts of the climate crisis and is willing and able to assist the Council in informing the broadest possible population with the immediacy of the threat and the need to act quickly with the necessary information to effect real change.

    New York’s geographic and socioeconomic diversity will lead to a wide range of experienced climate driven impacts. Warming trends and incidences of intense heat waves will contribute to greater localized heat stresses; heavy rainfall events that exacerbate localized flooding will continue to impact food production, natural ecosystems, and water resources; and sea-level rise threatens sensitive coastal communities and ecosystems. Climate-driven impacts are magnified when accounting for New York’s most vulnerable populations, who are often disproportionately affected and on the front lines of climate change.

    The Council has a responsibility to empower individuals and communities in the far-reaching actions required to mitigate and adapt to the negative socio-economic-environmental impacts of climate change. A key component must be a move away from a large-scale, global production/distribution model and toward re-localization – achieving fulfilling and equitable local livelihoods, lived in harmony with home bioregions.

    Underpinning this transition is an understanding that the climate crisis requires urgent national, state, regional, and local action now. Without immediate action in New York’s transportation sector, an era of far-more-costly, and less available, fossil fuels – marked by disastrous global supply chain interruptions and shortages – looms and is inevitable. We have lost the resilience needed to cope with such system shocks. So immediate adaptation is essential.

    Because words have power, The Council, must pay close attention to the thousands of commentors and be prepared to craft a compelling collective story – a promising vision of what New York in a carbon constrained future might be – not so much in policy and technological terms, but by providing community leaders the information and tools they need to engage their communities, family, friends, neighbors, and colleagues about what a positive path through the climate crisis will entail – to explore an array of innovative heritage and leading-edge technologies by which New Yorkers can thrive in decades ahead – designing and realizing pragmatic, environmentally and economically sound tools for peacefully, equitably, and intelligently transitioning away from fossil fuels. We must act together, using all our skill, ingenuity and intelligence, our home-grown creativity and cooperation, to unleash the collective genius of local communities, individuals, organizations, supported by the climate action plan, to achieve an abundant, connected, and healthier future for all.

    As a species, we are storytellers. And the stories we tell collectively, whether they be found in Gilgamesh, the Bible, folklore, tradition, or government policy all serve as action plans for the time. They tell us what worked well in the past so we might move into a productive future. But sometimes those tales become outdated and the signposts pointing to safety in the past instead lead us down paths into danger.

    The tale we’ve told ourselves over the last 300 years, since the “Age of Reason” and on into the modern Age of Expansion, is that we live in a time of limitless progress, of ever-expanding opportunity and possibility, in which there is a high technological fix for every problem.

    In this story, we tell ourselves that unlimited growth and soaring GDP is a real measure of economic health and community wellbeing; that a rising stock market protects us, no matter how rundown our neighborhoods; that deregulation stimulates investment, even as climate destabilizing emissions rise; and that national security need only focus on existential threats beyond our borders, and not on quality of life and preservation of civil liberties.

    Today, climate change — along with the socio-environmental and economic upheaval it brings — is turning the idea of endless progress on its head.  That’s why it is long past time for us to tell a new story: one that recognizes the turbulent sea of change we sail in; a story that recognizes the dangers around us but doesn’t demand a fear or grief response. This new story inspires us to prepare together as communities with open eyes, minds, and hearts — ready to face the risks of impending calamity while embracing the promise of resilience and hope of regeneration.

    We need to change the narrative now, embrace a new story truer to circumstance — a storyline in which we heroically face adversity together, creating abundance out of crisis together, moving with agility through chaos toward new community values that will sustain us in the unsettled years ahead. The roots of that story are certain: we will thrive only by being earth and community stewards, rather than exploiters; only by demanding that our leaders address not only the economic balance sheet, but also our ecological and equity balance sheets. Only then will we be able to go ahead with hope and find a safe harbor in the climate crisis. Only then can we leave a better world for our children.

    For the Council to tell this story we must first Assess and Evaluate:  Start by objectively assessing threats, then unflinchingly evaluate the greatest points of weakness — whether these take the form of infrastructure; social, public health, economic, environmental, or political structures. We need to fortify those weaknesses against the storms to come — work that will enrich our State, cities, towns, and neighborhoods in the present, while reducing risk and enhancing resilience for the future.  Unfortunately, the Transportation Sector is tepid in its goals and strategy for finding solutions in a timely way to the unfolding climate crisis in New York.  It is time for bold action not “hedging.,” because there is generally resistance to change, and The Council and its recommendations have powerful adversaries. 

    An astroturf[1] organization, New Yorkers for Affordable Energy, a fossil fuel industry front group,  retained SKDKnickerbocker, a public relations and lobbying firm with a history of operating similar front groups working to undermine workers’ and tenants’ rights.

    The corporate interests behind New Yorkers for Affordable Energy have already succeeded in eliminating a proposal from the state budget to ban fossil gas hookups in newly constructed buildings – which was recommended by the Climate Action Council in its draft scoping plan –  and are now promoting misinformation to further weaken New York’s agenda as the Climate Action Council reviews comments on its proposed plan.

    New Yorkers for Affordable Energy launched a television ad that seeks to drum up opposition to the proposal through misinformation. The ad claims that the bill would “ban gas stoves and furnaces… sticking you with a $30,000 price tag to replace them.” Energy Citizens an arm of the American Petroleum Industry is telling an untruthful but compelling story…….. Want Albany to choose your appliances?  And Don’t let the government tell you what kind of appliance you can buy.“

    The first thing that the Council must do to counter this negative propaganda is clarify the crisis and provide the informed and engaged public with attainable goals for a “softer landing” for our children and grandchildren in what is likely to be a chaotic midcentury future.  And hire an equally talented public information/crisis management consultant to counter the incessant and misleading negativity of the New Yorkers for Affordable Energy.

    The Council must re-evaluate the use of terms like growth and competitiveness in addressing the Climate Crisis:

    The faster we produce and consume goods, the more we damage the environment,” Giorgos Kallis, an ecological economist at the Autonomous University of Barcelona, writes in his manifesto, “Degrowth.” “There is no way to both have your cake and eat it, here. If humanity is not to destroy the planet’s life support systems, the global economy should slow down.”

    In “Growth: From Microorganisms to Megacities,” Vaclav Smil, a Czech-Canadian environmental scientist, complains that economists haven’t grasped “the synergistic functioning of civilization and the biosphere,” yet they “maintain a monopoly on supplying their physically impossible narratives of continuing growth that guide decisions made by national governments and companies.

    In the mid-1970s, the phrase “small is beautiful” became a counterculture slogan against the industrial threat to the environment and the scarcity of resources. Arguing against excessive materialism and meaningless growth, the late Dr. Ernest Friedrich Schumacher—the author of Small Is Beautiful: Economics as if People Mattered,

    … promoted the use of small-scale technology to benefit both humankind and the environment. As an economist trained in a market-oriented discipline, his thinking evolved from believing that large-scale technology could be salvation for industrial civilization to believing that large-scale technology is the root of degrading human beings and the environment.

    In the Transportation Sector, as well as the entirety of the Scope of work for the Climate Plan, a new way of looking at the economy, culture and environment of New York must be adopted.  The idea that growth is necessary skews the plan away from true mitigation and adaptation to the Climate Crisis.  The document also does little to explain the role of public and private transportation policy and implementation decisions made in New York, in conjunction with the federal government, in creating and exacerbating the climate crisis.[2]

    The transportation challenge: We in New York need to think differently about how to move goods and people from place to place in a carbon constrained future because we are living in an age of unprecedented change, with several crises converging. These calamities have been exacerbated by the profligate use of   cheap, non-renewable fossil fuels. This “quadruple crunch” of overlapping events, a global financial crisis, pandemics, accelerating climate change, and aberrant fluctuations in energy prices exacerbated by imminent peak oil makes it increasingly clear that this combination of events threaten to develop into a “perfect storm” with devastating economic and environmental consequences for not just the New York but for the country and the world.

    New York’s transportation sector contributes almost 30% of carbon emissions. And the seminal questions that should be asked by the Council in this sector is:

    • In a carbon constrained future, how will goods and people be moved from place to place, and what role will The Climate Action Plan provide in resources and leadership? 
    • How should we meet the looming challenges of climate change, rising sea level, aging infrastructure, changes to global shipping and supply chains, threats to food security, and the risks these changes bring to New York’s environmental, cultural, and financial wellbeing?
    • How do we address this daunting multitude of challenges and turn them into opportunities for transforming transportation to serve our State far effectively and efficiently into the future?

    Summary of Recommendations: C4PCL’s comments focus on opportunities, adaptation, and mitigation in the Transportation Sector and on solutions that use and enhance New York’s entrepreneurial, commercial, and industrial enterprises, makers, processors, local resources, and by training and employing New Yorkers in a carbon constrained future.

    Recommendation 1. Decarbonize Maritime Transportation: Moving goods and people from place to place in a carbon constrained future will be dependent on sailing vessels, hybrid/fossil free electric ships, and people/electric, powered transport for first and last mile logistics.

    Recommendation 2. Converting ICE vehicles to EVs/ZEVs/alternative fuels: There is very little disagreement that EVs/ZEVs are the future of the automobile and light truck industry.  Over the lifetime of a ZEV the carbon footprint is significantly less than an internal combustion vehicle.  One huge problem given short shrift in the Scope is what happens to all those ICE vehicles that get traded in?

    Recommendation 3. Improved and Free Transit: Tallinn, Estonia made international headlines when it became the first capital city in the world to introduce free public transport for its residents in 2013.

    Recommendation 4. Demand Responsive Transportation (DRT): When it comes to improving public transportation in rural areas—flexibility is key. The first step is to provide an easy and efficient way for more people to access public transportation. On-Demand Public transportation, also known as Demand-Responsive Transportation (DRT) provides a way to increase the geographical coverage of a traditional public transit service.

    Recommendation 5.  Electrification of commuter, interstate, and municipal buses: Close to 90% of commuter intra and interstate buses are diesel powered.  Some municipalities are transitioning to hybrid and electric buses, but the Plan should include regulation, incentives, and subsidies for the conversion of all diesel-powered buses. 

    Recommendation 6. Electrification and Solarization of freight and passenger trains: Trains are one of the most efficient and sustainable form of transport.  Worldwide around 75% of trains have been electrified, while 25% still use fossil fuels. The bad news is that even electric locomotives use a partially polluting mix

    Recommendation 7. Improved bicycle and E-bike transportation opportunities: Although electric bicycles didn’t receive much attention during the COP26— to the chagrin of some sustainability mobility advocates — 2021 was the year they found a more welcoming home around the world. An analysis by Business Research published in mid-November estimated global e-bike sales at $36.5 billion for the year, a compound annual growth rate of more than 12 percent over 2020. Within three years, revenue could reach $53.3 billion, the market research firm predicts.

    Recommendation 8. Airships and electric aircraft: Airships are relatively inexpensive, they can carry a substantial amount of cargo, and they are significantly more environmentally friendly than their heavier-than-air relatives. Once thought to have passed into memory, airships are having something of a renaissance.

    ——————————————————————————————————————————–

    Recommendation 1: Decarbonize Maritime Transportation

    Moving goods and people from place to place in a carbon constrained future will be dependent on sailing vessels, hybrid/fossil free electric ships, and people/electric, powered transport for first and last mile logistics.

    Despite its present dominance, our current maritime logistics system is fragile. It is reliant upon carbon-based fuels driving internal combustion engines. It is interwoven into long-distance, globalized world trade. It is designed for Just-In-Time delivery. And it depends upon its present ability to avoid paying for negative externalities such as carbon emissions and environmental pollution, and to avoid being governed by meaningful labor, environmental, health, and other laws.

    polluting vessel

    The international shipping industry is one of the largest greenhouse gas emitters. If the maritime sector were a country, it would be one of the top six carbon polluters.  The shipping industry has been reluctant to take unilateral leadership on emissions.  The International Maritime Organization (IMO) is puttering around the edges. It recently declined to make a greenhouse gas reduction plan or commitment. The United States for a variety of reasons, chief among them that there is a tiny US flag fleet, has remained almost silent on this issue.

    The Center for Post Carbon Logistics (C4PCL), along with a local, regional, and international coalition posit an alternative.  That alternative is disruptive competition from an emerging suite of technologies –solar, wind/sail, and green hydrogen  powered shipping on New York waterways.  Water-borne shipping, even now, is dramatically more energy-efficient than its land-based counterpart.  New York, with its network of waterways connecting the Great Lakes to the Hudson, to New York Harbor, and the ocean, has a leadership opportunity in growing this industry.

    Achieving New York State’s Climate Act’s goals will require addressing the enormous footprint of transporting goods and people using fossil fuels.  Building Future Proof ships in New York’s Hudson River shipyards is the first step toward a regenerative shipping industry on New York’s canals, the Hudson River, The Harbor, the East Coast, Caribbean, and transatlantic routes.

    New York’s Waterways:

    What role will New York’s waterways play a carbon constrained future? How should we meet the looming challenges of climate change, rising sea level, aging infrastructure, changes to global shipping patterns, threats to food security, and the risks these changes bring to New York?

    The USDOT Maritime Administration (MARAD) America’s Marine Highway Program was created by Congress in 2007 and expanded in 2012 and 2016. Marine Highways are water-based freight corridors. For example, M-87 includes the Hudson River and connects ports and harbors from New York City to Albany and navigation channels such as the Erie Canal. The MARAD program was created to expand the use of the country’s navigable waterways to relieve landside congestion, reduce air emissions, and provide new transportation options to increase the efficiency of the surface transportation system. MARAD administers a grant program to fund system improvements. New York is served by Marine Highways M-87, M-90, M-95, and M-295.

    The Hudson River, a Water Highway

    Not so long ago the Hudson River was a bustling highway linking even the smallest communities to a web of regularly scheduled commercial routes. Schooners, sloops, barges, and (much later) steamboats provided a unique way of life for early river town inhabitants. Farmers, merchants, quarrymen, brick factories, and oystermen relied on this vibrant and diverse fleet of vessels to bring in supplies and deliver their goods to market. This arm-of-the-sea was an integral part of the lives of those who worked New York’s waterways.

    However, life at the water’s edge is rapidly changing. The impacts of new technology, patterns of urban development, and globalization are redefining global logistics, and while some waterfront cities will thrive as ports and grow under these new conditions, others will need to evolve to survive and succeed…. How will New York re-invent its maritime transportation sector?

    How do we address this daunting multitude of challenges and turn them into opportunities for transforming our waterways and ports to serve our regional and national economy effectively and efficiently into the future?

    • If present trends continue, New York and its largest and smallest ports will need to be transformed into the spokes of a hub for “short sea shipping”  rather than serving as terminus for unsustainable container cargo. The good news: the New York has an extensive network of waterways, and so is very well suited for the short sea shipping mode of freight transport. Moreover, public agencies and private companies are investigating the potential economic and environmental benefits of transferring more cargo from road to sea.
    • As New York moves forward to low/no carbon shipping and the working waterfronts of tomorrow, the constraints, and in some cases the advantages, of smaller and (s)lower tech modes of transport must be considered to support these imminent changes.
    • If the New York’s maritime transport and working waterfronts are to thrive, 19th, 20th, and 21st Century technology must meld seamlessly into new, mid-century methods of transport with an emphasis on what might seem like bygone, but productive, methodologies to become more self-sufficient and sustainable.

    Priorities, amendments/additions to Transportation Sector:

    Green Shipping Corridor
    1. The Council Adopts a Hudson River Green Shipping Corridor:[ii]

    Achieving zero emissions from maritime transportation over the coming years and decades will require research, development, demonstration, and deployment at a massive scale, as well as enabling policies that incentivize the shift to low- and zero-emission fuels and technologies as soon as possible.  Adoption of these fuels and technologies, while limited in the short term, will rapidly accelerate once the supply chain is established and governments and the shipping sector signal their intent for energy transition.Green shipping corridors are meant to accelerate this early adoption phase. They therefore should strive for emissions reductions that push the envelope beyond business-as-usual, demonstrating a commitment to achieve full decarbonization through sustained efforts.  Green shipping corridors will not achieve zero emissions across all aspects of the corridor overnight.  Instead, the journey to establish a fully decarbonized corridor is a series of steps and actions taken over time to cover all aspects of the route.

    One of the first steps in creating a green shipping corridor is to convene relevant stakeholders across the value chain and to outline anticipated timelines, targets, and achievements.  Creating a fully decarbonized green shipping corridor is a process, which will require long-term plans to help participants achieve their emissions reduction goals.  Stakeholder engagement will be critical, especially with residents in communities with environmental justice concerns, to ensure strategies are tailored to address the priorities and goals of near-port communities. New York State through its Climate Plan establishes the Hudson River, and the New York State Canal System as the nation’s first Green Shipping Corridor.

    2. The Council/New York DOT Support a MARAD Marine Highway Project Designation for M-87 Hudson River:

    In April 2022 the C4PCL and colleagues[3] provided the NYSDOT, with materials for consideration to become the applicant for the Maritime Administration, Marine Highway project designation for Hudson River based maritime commerce projects.  The Department responded after several weeks of deliberations, without explanation, that the project did not qualify.  We, adamantly disagree and although the deadline for applications for project designations has passed for this year, we believe that these projects have merit and will continue to pursue them, and specifically ask that this project designation is included in the Climate Plan’s Transportation Sector. 

    New York Marine Highways

    Why this designation?

    The Hudson River properly prides itself in being the cradle of pioneering maritime technology and the birthplace of the environmental movement.  It has always been a magnet for innovative thinkers and doers in transportation technology, maritime commerce, engineering, agriculture, business, and artisanship who are inventing new ways of doing business and employing people with a smaller environmental footprint and a passion for equity and inclusion.  Our regional post carbon maritime strategy is designed to engage and support the creative economy, broadly defined, and to be disruptive in a positive way. 

    This collaborative effort extends the entire length of the M-87 Marine Highway[4] corridor and revolves around, but is not limited to the New York State Canal System, Hudson River, New York Harbor, the US East Coast, and Caribbean. 

    To highlight the benefits, increase public awareness and promote The Hudson River as a necessary alternative to “landside” shipping and transportation options, a group of maritime professionals and advocates from all around the region propose a series of Marine Highway project designations to:

    • Adopt a Hudson River Green Shipping Corridor
    • support existing and proposed low/no carbon commercial maritime ventures and post carbon logistics,
    • enhance ship building and repair industries,
    • the revitalization and resilience of small Hudson River ports,[5] 
    • and the re/training of shipwrights, longshore and logistics professionals, and mariners.  (see 6.The Hudson River Maritime Innovation Center)

    In the 19th until the mid-20th centuries, the Hudson River bustled with commerce and lay at the heart of a thriving network of “Marine Byways” — waterways stretching from the Atlantic west to the Great Lakes linking cities and the smallest communities to a web of regularly scheduled transportation routes.  For hundreds of years, thousands of ships and boats of all sizes served local cargo and passenger needs. The Hudson River — and the ships and boats sailing her — were vital to those who lived and worked along these inland waters, putting those communities on the map.

    Today, however, waterways like the Hudson River, and its small ports are underutilized. Incentivizing shippers to use this critical transportation corridor more consistently would create significant public benefits and opportunities, including but not limited to a lower carbon footprint for the movement of freight and passengers.

    Solaris

    This initiative is well along in the process with initial vessels such as the sail cargo Schooner Apollonia, and the Solar Electric CG inspected passenger vessel Solaris already in service, the Hudson River Maritime Museum’s  Boat School and maritime history exhibits, sail freight exhibit, sail freight conference, and education projects, and major sailing vessel restoration projects,  as well as active commercial, shipwrights,  shipyards and boat builders throughout the corridor.  Within the next 1 – 5 years, it will create and enhance a wide array of public benefits for the people in this strategic corridor.  It will:

    • create and sustain jobs on New York built vessels, and at ports, and shipyards
    • relieve landside congestion in transportation and shipping
    • show by practical example, the use of emerging resilient and renewable propulsion technologies
    • improve New York’s and the US economic competitiveness by adding new cost-effective freight and passenger transportation capacities
    • improve environmental sustainability of New York’s and the US transportation system by using less energy and reducing greenhouse gases per passenger or ton-mile of freight moved

    Marine Highway Proposal for Project Designation:

    Although the M-87, the Hudson River from NY Harbor to the Erie Canal is designated a Marine Highway, until recently with the reinvigoration of sail cargo and solar powered passenger service, there has been underutilization of the river’s small ports.  The primary commercial vessels currently transiting the Hudson are petroleum and chemical barges, some ocean-going ships, and tug and barge project cargo going directly from New York Harbor to Albany/Troy, and some seasonal tour and cruise ships.

    The proposed Marine Highway project designations will address this limitation as it activates a network of maritime transportation advocates, shipping and agricultural products processing enterprises, “makers” and small manufacturers, first and last mile logistics businesses, ship yards and boat builders, community organizations, municipalities, counties, and The State of New York to revitalize the Hudson’s maritime economy anticipating the challenges and advantages of moving goods and people by water in a carbon-constrained future, and to ensure that this vision is aligned with community, ecological, and equity values and sensibilities; to achieve this goal.  The following are the projects that are proposed for designation to make them eligible for funding under the Maritime Administration, Marine Highway grants program.

    Proof of Concept:

    Schooner Apollonia

    The Schooner Apollonia is engaged in commerce under sail on the Hudson River and New York Harbor. Apollonia is a 64-foot steel-hulled schooner built in Baltimore, MD in 1946. She is designed to move efficiently through the water, powered by a traditional gaff-rig sail plan designed by naval architect J Murray Watts.  With a 15’ beam and rugged steel construction, she’s a stout work boat capable of carrying 20,000 lbs. of cargo. Being a schooner, the crew requirements are smaller, and the variety of sails gives flexibility for different conditions that we will encounter on the river.  Apollonia is the descendant of the Hudson River Sloop and the proof of concept for Jones Act compliant, purpose-built sail cargo vessels designed for River, Harbor, and short sea coastal trade.

    • Hudson River/New York Harbor Sail Cargo Service
      • When designated, the project funding will be used to expand the operations of the Schooner Apollonia and the ports and customer she services.  Apollonia is an existing sail cargo business transporting primarily malt, flour, and grain to distilleries and breweries, other agricultural products to processors, and shelf stable local food and beverage products to customers.  To continue to develop the route, secure docking, loading, and unloading facilities, warehousing, first and last mile low carbon logistics, secure haul back cargoes, upgrades to existing vessel, and R&D and design a purpose-built ship(s) for this route will require significant public and private investment. 
      • Develop a low carbon logistics system, more of a “warehouse in transit,” than “just in time” model.  To implement the “parallel” low/no carbon logistics system, a “post carbon” third party logistics company (PC3PL) will be established. This PC3PL provider is a specialist company that will provide a range of distribution, storage, transport, and fulfillment services to Apollonia, (and to other vessels as the fleet expands) as well as low/no carbon first and last mile logistics companies, producers, purveyors, wholesalers, retailers, and end users. These companies would outsource these types of operations to the PC3PL business and rely on the PC3PL to offer end-to-end management of specific services.[iii]
    • The expansion of an existing maritime cargo service:

    To meet the emergent climate crisis, and to confront the immense carbon pollution of the existing fossil fueled transport of goods and people throughout New York and the Hudson Valley, a new generation of  “future proof” Liberty from Fossil Fuel Ships will be upgraded, repurposed, and locally built to enable the continued movement of goods and people from place to place by water in a carbon constrained future, and  to highlight the benefits, increase public awareness, and promote The Hudson River as a necessary alternative to “landside” shipping and transportation options.

    These ships will be brutally simple, but elegant, re-used, re-purposed, and purpose built by local shipwrights to kick start the revival of US flagged ships in domestic, short sea, and international trade. Using proven construction techniques and tried and true (as well as innovative) sail propulsion/electric propulsion technology these “flagships of the future” will be the first steps in adapting to and mitigating the climate crisis, that in significant part is caused by fossil fueled transport.

    Locally built, from locally sourced and recycled materials, crewed with locally trained mariners, home ported along the Hudson, the Harbor, and the canals, carrying locally grown, locally processed, and locally manufactured goods – with liberty from fossil fuels, these future proof ships will be a positive disruption to the status quo.

    Eriemax RSS 80 Geoff Uttmark
    1. Purpose built vessels for M-87, M-95, and M-90 Marine Highway Service:
      • Eriemax Sail/Electric Canal, River, and Coastal Cargo and Sail Training Vessel:
    2. develop final design, building plans, and price of construction at a Hudson Valley Shipyard, for a purpose-built prototype 80’ canal, river, and coastal, sail cargo vessel for a new generation of climate adaptive modular design freighters using the best combination of traditional and new technology.  The $800K to 1.5 million (estimated) price for construction could come, in part from the Federal Ship Financing Program (Title XI) and significant public, private, and crowdfunded investment.  Concept in Appendix 2.
    Electric Clipper Derek Ellard Design
    1. R&D, design, and develop shipyard drawings for a purpose built 180-200’ “short sea” and transoceanic “Electric Clipper” sail freight and training vessel with a cargo capacity of up to 900 tons or 36 TEUs. A concept drawing of this vessel is included in appendix 2. The estimated $2.5 to 3.5 million construction cost could come from the  Federal Ship Financing Program (Title XI) and significant public, private investment and crowdfunded investment. 
    2. Hudson River Solar Ferries. This grant, when designated, will support a comprehensive ferry master plan to develop a new, modern, efficient, solar electric passenger and cargo ferry design for Hudson River transits. The plan will serve as a comprehensive analysis of operations and service needs, and help determine the types, sizes, and number of ferries that are needed in the future. With a regional and national push towards a low carbon economy transition, the Hudson River passenger ferry system can incorporate technologies within the vessels that can benefit the environment, passengers, and the communities the ferries serve.  These funds will also be used to develop preliminary designs for these vessels and will make use of the three years of performance data from the operation of the solar electric Coast Guard inspected passenger vessel Solaris.  An additional option would be to convert the existing Beacon/Newburg Ferry to battery electric. This project then could be considered an expansion of existing service.  
    3. The Marine Byways and Resilient Small Port Toolkit,[iv] when designated, will collect, and disseminate (in reports, apps, and interactive websites) new and existing information to enable the revival of small port working waterfronts, and small to medium sized maritime and logistics businesses. This data collection will include but not be limited to review, analysis, and reporting of the findings of government and non-governmental reports and publications, as well as field checking and developing new sources of information.[v] Examples already underway, or completed are  GIS port mapping work being done by the Schooner Apollonia and the Center for Post Carbon Logistics with assistance from Vassar College interns,[6] and GIS flood mapping work done by Kytt McManus at Columbia, and by Scenic Hudson’s Sea Level Rise Mapper.
      1. Rondout Riverport 2040/A resilient small port blueprint 
        1. A paper prepared for a conference in September 2021 for the Wind Propulsion Conference held by the Royal Institute of Naval Architects.  The paper was republished in two parts at Resilience.org. Rondout Riverport 2040 Part 1, and Part 2.  This report and publication along with other materials can be the basis of planning for resilient small ports throughout New York.

    5. Decarbonizing Recreational Boating

    In 2018, 2019 there was total of 440,381 boat registrations, of which, 435,213 were registered for recreational purposes in New York. Those, primarily powerboats consist of fossil fueled 2 and 4 stroke outboards and inboard gasoline or diesel engines, many large and small sailboats have auxiliary outboard or inboard gasoline and diesel engines.   

    • Jet skis and pleasure boats combined accounting for 1.4 billion gallons of gasoline in the US.
    • Resins in fiberglass boats, “Dacron” in sails and lines are derived from fossil fuels
    • Boats release numerous harmful substances into aquatic and marine environments, including nitrogen oxide, particulate matter, carbon monoxide, and non-methane volatile organic compounds (NMVOCs).
    • ships and boats in the US produced about 44.5 million tons of carbon dioxide equivalent in 2019

    E-boat and electric motor manufacturing opportunities

    Electric powered boats, like electric automobiles were ubiquitous in the early to mid-twentieth century and are seeing a resurgence as motors, batteries, and solar panels become lighter and more available.  There are New York based electric boat and motor manufacturers and with the appropriate incentives, such as expanding the Green Boat program statewide will provide more employment opportunities and economic development while reducing the carbon footprint of recreational and tourism boating.

    • Solar Sal Boats is a solar electric boatbuilding manufacturer founded by David Borton a New York based solar boat pioneer.  Solar Sal boats was the client for the construction of Solaris, the Hudson River Maritime Museum’s solar electric Coast Guard inspected solar electric passenger vessel.
    • Elco is a electric yacht and motor manufacturer located in New York.  “Combining traditional and proven designs with trailblazing motor and control technology, Elco leads the industry in electric propulsion. Elco outboard and inboard electric and hybrid propulsion systems provide quiet and clean power for those water-based activities.”
    • Finger Lake Electric Boat  is an electric boat company located in the heart of the Finger lakes of New York. Taking over the production of Adirondack Electric Boat that started in the year 2001 they are continuing the production of Adirondack style electric boats.  In addition to building the Adirondack style electric boats we are in the process of adding new electric boat models to the Finger Lakes Electric Boat fleet.
    • Halevai Boats will build renewable energy solutions for the marine industry. We are developing better building materials and methods to build boats. Founded in 2020, Halevai is a new concept boat manufacturer focused on design, reliability and conservation.  Our debut craft, the model 2050, was inspired by the goals of the historic COP21 UN climate conference and is the first high performance boat in its category to be fully electric powered.  
    • Scarano Boat Company electric powered canal boat replica.  Scarano Boat designs and builds period wood, aluminum, composite, and steel boats, Coast Guard–certified for public transportation and excursions. Scarano Boat has developed a national reputation for modern wood construction. Scarano Boat has found a niche in the production of replica sailing vessels, and certified passenger vessels with classic styling and appointments. 
    electic catamaran conversion (Rik van Hemmen)

    Converting Fossil Fueled recreational boats to hybrid/electric

    Instead of developing technologies to replace current recreational boating equipment, some vessels can be “retrofitted,” for a more efficient performance.

    • For example, in 2015, a small team of researchers successfully converted an 18’ Pursuit 2000 S2 gasoline-powered boat into a hybrid electric boat, or HEB. Specifically, they replaced a nonfunctional Evinrude 225 V6 engine with a battery-powered electric motor.[7] The new eco-friendly design is intended for use in rivers and lakes, primarily. The deep-cycle batteries can be solar charged and powered by a hydrogen fuel cell unit as a bonus.  
    • In 2020, another team followed suit, aiming to “[convert] a traditional internal combustion engine-powered leisure boat into an electric propelled type.” This project also focused on battery power, particularly a Battery Energy Storage System (BESS). This reduces fuel consumption and could potentially save boaters money on refueling.[8]

    According to the American Boating Association, “Clean boating and other forms of environmental stewardship (or the lack thereof) has the potential to affect a significant portion of the Nation’s economy.”. Electric propulsion can start to put an end to greenhouse gas production.

    student shipwright

    6.    The Hudson River Maritime Innovation Center, a multiyear proposal:  Year one, planning and facility(ies) identification) The Maritime Innovation Center will help the region’s maritime industry adopt new, and traditional maritime technologies, stimulate innovative entrepreneurship, promote knowledge transfer, business incubation, and workforce development to address maritime innovation challenges and opportunities.

    The Maritime Innovation Center will provide training for the next generation of shipwrights, longshore and logistics professionals, and mariners, sustain maritime industries, and assist the Hudson Valley region’s ports to modernize and become more climate adaptive, enhance post carbon logistic operations, promote green shipbuilding, and provide good jobs in the marine industry, and key lines of businesses, services, and products.

    Vision for the Center: The Hudson Valley will be a hub for resilient maritime businesses by creating a system of innovation that drives productive collaboration among non-profit, industry, academia, and local, county, and state government. Partnering with other maritime enterprises and organizations the Maritime Innovation Center will provide a physical place where professional practitioners, students, and apprentices can participate in theory and practice workshops for teaching and learning new maritime technologies while preserving the skills of the past to serve a carbon constrained future. 

    Focus:  The Center will focus on marine technology, and marine policy. Attendees should expect to spend time on ships and in shipyards in all seasons with the Innovation Center’s business and public partners. The Innovation Center will work to develop authentic activities on and around, ports and the river that create a sense of responsibility to the Hudson River and develop a new generation of maritime advocates, workers, and decision-makers who know how to use their heads, hearts, and hands. 

    It will be designed to help those who participate discover their interests and passions, not just prepare them for tests. At its core, the is about inspiring personal growth through craftsmanship, community, and maritime tradition.  Paraphrasing the title of Transition Town Rob Hopkins’ book, The Hudson River Maritime Innovation Center will be the embodiment of the “Power of Just Doing Stuff.”  

    Floating Office Rotterdam

    Facility, structure, and location: A new or climate adapted historic shoreside building(s), a vessel like the Floating Hospital Ship (Now moored in the Rondout Creek), or a floating facility like the Floating Office Rotterdam will be built, adapted, or restored, and modernized into a LEED-certified, “future proofed,” and environmentally friendly facility. It will include a mix of classrooms and working space for incubators, accelerators, and anchor tenants along with fabrication and event space. The facility will be a “Living Structure” with advanced sustainability and resiliency features.

    This center will benefit the region and the maritime community in several ways: 

    • Creating new employment opportunities for young people, and retraining experienced workers in the participating startups and established maritime businesses
    • Building the region’s status as a center for excellence in the maritime economy in a carbon constrained future.
    • Elevating awareness of entrepreneurs and stimulating confidence in the maritime industry to create new (and renewed) products and services 
    • Creating new opportunities for established area businesses to develop relationships with early-stage companies
    • Nurturing the next generation of diverse, inclusive, and representative maritime workforce with technological expertise and access to “green,” living-wage jobs as mariners, ship and boat builders, logistics specialists, welders, woodworkers, riggers, sailmakers, and battery and solar electric propulsion installers, and maintenance techs among others.

    Recommendation 2. Converting ICE vehicles to EVs/ZEVs:

    There is very little disagreement that EVs/ZEVs are the future of the automobile and light truck industry.  Over the lifetime of a ZEV the carbon footprint is significantly less than an internal combustion vehicle.  One huge problem given short shrift in the Scope is – what happens to all those ICE vehicles that get traded in?  Normally the vehicles whether sold privately or traded into a dealer will be resold and can operate for tens of thousands of miles more with the same or increased emissions.  Even if all ICE vehicles are taken out of service in New York by a certain date, those vehicles will be sold in another state or overseas, so there will be no net reduction in emissions for the life of those vehicles.

    ICE to EV conversion

    Subsidize the ICE to EV,ZEV, alternative fuel conversion business in New York:

    Presently ICE to EV conversions are limited to specialty custom businesses for customers with “classic” or “performance” cars, and some kits sold to DIY mechanics.  The process can range in price from less than $10 thousand to more than $100 thousand.  However, if New York made the decision to subsidize/incentivize new conversion businesses, re/training mechanics, and provide tax credits and other incentives to vehicle owner “first adaptors” that brought the cost down to less than the price of a new ZEV there are several overlapping benefits.  Many people like their present cars and light trucks and may resist buying a new, expensive EV that feels, looks, and drives differently than their present vehicle. 

    Working with NYSERDA, NYSDOT, NYSDEC, NGO’s and other relevant businesses, institutions, and federal agencies initiate demonstration projects:

    • Municipalities, counties, and state agencies decarbonize their fleets
    • BOCES training and retraining programs for conversion specialists, for independent mechanics and dealer employees
    • “Cash” for engines, exhaust systems, fuel tanks, and accessories for more than scrap value.
    • Computerized supply chain for used and new motors, batteries, brake vacuum pumps, power steering, electric heaters, seat heaters, EV adaptable air conditioning, and regenerative braking systems.
    • Subsidies and tax advantages for electric motor and battery manufacturers to relocate to New York.
    • Work with vehicle producers to provide components for conversion, E.g. Ford Lightning parts for Ford ICE pickups.
    • Incentivize dealers to convert ICE trade ins to EV’s
    • Incentivize School districts to convert diesel school buses to EVs and alternative diesel.
      • When we consider emissions from electric school buses, it is important to remember that the population most exposed to diesel school bus emissions are children. Children are especially vulnerable to the health effects of air pollution.  
    • Incentivize fleet operators and car rental businesses to buy conversions or set up conversion facilities
    • Incentivize farmers to convert diesel tractors and other ICE vehicles to alternative diesel and EVs.
    • Incentivize police, fire, and emergency departments to convert existing ICE fleets.
    • Set regulations and standards and train inspectors for both professional and DIY conversions
    • Prohibit the exportation of functioning ICE vehicles from New York to other States or overseas.
    • Provide subsidies and incentives for “fryer fat” to biodiesel conversion facilities.
    • Provide subsidies for biodigesters for biogas from organic waste facilities.

    Recommendation 3. Improved and Free Transit:

    Public Transportation Improves Commuters Productivity

    Free Public Transit enhances all these benefits:

    Tallinn, Estonia made international headlines when it became the first capital city in the world to introduce free public transport for its residents in 2013. With a population of almost half a million, the municipality undertook the measure to make access to public transport more equitable and for the perceived economic benefits.

    “We wanted to improve social mobility and stimulate the local economy by getting people out and about on the evenings and weekends,” says Allan Alaküla, Head of Tallinn’s EU Office and spokesperson for the scheme.

    Surveys conducted by the city in 2010 and in 2011 indicated that ticket costs had become the main barrier to increasing usage of public transport, which was in turn hindering the city’s broader economic development.

    Island Transit has been a fare-free bus system since its founding in 1987. You don’t need a ticket, cash, or coins to ride the bus, which makes bus transportation a very easy and convenient way to travel around Island County. Just hop on and go. Bus service is funded through 9 tenths of 1% of Island County’s local sales tax and supplemented by state and federal grants.

    Stinger Anderson got hooked on riding the bus after a colleague showed him how. He loves the tradeoffs including more time and money to spend in other ways.

    Recommendation 4. Demand Responsive Transportation (DRT):

    When it comes to improving public transportation in rural areas—flexibility is key. The first step is to provide an easy and efficient way for more people to access public transportation. On-Demand Public transportation, also known as Demand-Responsive Transportation (DRT) provides a way to increase the geographical coverage of a traditional public transit service. This means vehicles can cover a larger service area and reach more passengers. By utilizing DRT technology to improve fleet efficiency and give passengers a way to book public transportation—Councils, Fleet Operators and Transit Agencies in rural communities can easily improve their Public Transportation offering.[vi]

    Recommendation 5. Electrification of commuter, interstate, and municipal buses:

    Mass transit is the antidote to climate change,” MTA Chairman and CEO Janno Lieber said at a Midtown press conference, adding that transit avoids putting 17 million metric tons of greenhouse gases into the atmosphere annually (e.g., by keeping people out of cars). Transportation is the second-largest contributor of greenhouse-gas emissions in New York, after buildings.

    Close to 95% of commuter intra and interstate buses are diesel powered.  Some municipalities are transitioning to hybrid and electric buses, but the Plan should include regulation, incentives, and subsidies for the conversion of all diesel-powered buses.  The MTA has an electrification program but only a very small percentage of its fleet is electric. 

    The MTA now deploys 1,300 hybrid gas-electric buses, 399 of which sometimes operate solely on electric power in an “EV mode.” It pledges to purchase only electric buses by 2029. New York State budgeted $1.1 billion for buying 500 electric buses in the 2020-2024 capital plan.  This goal must be ramped up and speeded up and should include all municipal and county transit systems in the
    State.

    In the Portland, OR metro area, TriMet says it has cut its carbon emissions by more than 50% in the last six months by transitioning to renewable diesel and renewable electricity. It’s also trying to grow the number of electric buses in service.

    According to the Sierra Club’s Zero Emission Bus Fact Sheet:

    • EV buses already have lower comparative lifetime costs than diesel buses and CNG buses, and costs continue to drop rapidly.
      • Government estimates of zero emission bus prices sharply decline as advances in battery manufacturing and increased demand drive down costs. By 2025an electric bus is expected to cost $480,000, equal to or less than the cost of a new diesel vehicle.
    • Locked In O&M savings can then be used to expand the EV bus fleet, generating further savings
      • Electric buses also have substantially lower operating and maintenance (O&M) expenses as compared to their diesel and CNG alternatives. With an electric or hydrogen fuel cell bus, there are no oil changes or emissions tests, fewer parts that can break, and less wear on braking systems. The average lifetime maintenance cost for an electric bus is just $.60/mile.
    • EV Buses provide significant reductions in tailpipe and greenhouse gas emissions
      • It is also important to consider where these emission reductions will occur. Transit buses tend to operate in heavily populated urban areas and suburban corridors. Pollution from these sources falls directly upon the surrounding communities and commuters.

    Anecdotally there are no electric interstate buses operating in or to and from New York.  This provides an additional opportunity to convert diesel and natural gas buses to alternative diesel and EV’s.  See Solution 2.

    The Germany-based company FlixBus ran an electric bus pilot recently from Seattle to Eugene. The company purchased Greyhound in October, but it has been steadily expanding the U.S. market for intercity travel since it landed here in 2018.

    Recommendation 6. Electrification and solarization of freight and passenger trains[vii]

    Trains are one of the most efficient and sustainable form of transport.  Worldwide around 75% of trains have been electrified, while 25% still use fossil fuels. The bad news is that even electric locomotives use a partially polluting mix. The Council should set specific timetables for the electrification of all commuter and freight trains in New York and calculate the solar and other alternative electric power generation needed to accomplish this.

    • Continue electrification of diesel branches of commuter rail
    • Require that electricity be generated from non-fossil fuel sources
    • Working with NYSERDA provide grants to encourage the development of solar electric[viii] and fuel cell powered commuter and freight trains. 
    • Solarize all commuter rail stations (for trains, EV’s, and E-bikes) and create charging stations at rail maintenance yards.
    • Working with the Federal Railroad Administration and the NYSDOT begin the electrification of all freight/cargo trains in New York State. 
    • If electrification is not feasible research the use of hydrogen fuel cells, direct burning of green hydrogen or biogas or biodiesel in diesel/electric train engines and switching modes from rail to maritime. See Recommendation 1.

    Recommendation 7. Improved bicycle and E-bike transportation opportunities:

    Cargo E-bike

    Although electric bicycles didn’t receive much attention during the COP26— to the chagrin of some sustainability mobility advocates — 2021 was the year they found a more welcoming home around the world. An analysis by Business Research  estimated global e-bike sales at $36.5 billion for the year, a compound annual growth rate of more than 12 percent over 2020. Within three years, revenue could reach $53.3 billion, the market research firm predicts.

    E-Bikes for commuting and first and first and last mile logistics:

    • According to calculations touted by a legislative proponent of this idea, California Congressman Jimmy Panetta, if e-bikes handled many short-distance trips — particularly for commuting — currently traveled by cars, it would cut emissions by 12 percent.
    • While e-bike proponents generally talk up the benefits for individuals and commuters, the format also holds substantial promise when it comes to last-mile delivery, especially in urban environments where tricycles or quadricycles powered by pedal assist/battery could be a practical alternative to trucks and vans.

    Commuting, recreation, local shopping, and first and last mile logistics using E-bikes and trikes will have significant public and private benefits:

    • Improved health
    • Manufacturing, assembly, maintenance, and sales contribute economic benefits to the communities in which they are located.
    • Improves over all fuel efficiency
    • Reduces air pollution if E-bike batteries are charges from alternative power sources.
    • reduces road congestion
    • Improves individual and community mobility
    • Provides a more equitable transportation system

    Next steps:

    NYSERDA grants and state, county, and municipal subsidies and incentives for the manufacturing, sales, maintenance, and infrastructure for both recreational and commercial uses of E-bikes that include but are not limited to:

    • BOCES and other training facilities for E-bike builders, repair technicians, and sales.
    • Incentives for the development of E-bike, motor, and battery manufacturing facilities in New York
    • Dedicated bike lanes for rural and urban roads
    • Charging infrastructure and bike rental facilities at rail and bus stations and workplaces.
    • Employee incentives for use of E-bikes for commuting. Establishing a benefit that lets employers offer bike-commuting workers — those who do it regularly rather than occasionally a per month subsidy.
    • Higher tolls, congestion pricing, taxes, and incentives for the elimination of large trucks in urban centers
    • Traffic calming, street narrowing, de-paving, and xeriscaping.
    • The State working with other government divisions to change zoning to encourage and accommodate more bike friendly development patterns.
    • Multiple uses of “rail trails:”
      • Rail trails are primarily used by recreational hikers, bikers, and horseback riders.  A multi-use trail could accommodate small commercial E-bikes for cargo during certain hours and with some restrictions.
      • In many European countries bike paths, particularly in urban areas are shared with trolleys and other mass transit.  Even some of our existing rail/trails could be modified to accommodate inter-city trolley traffic along with the current uses safely.  The relatively small cost of replacing bridges and the use of self-contained battery electric rubber-tired trolleys would make this feasible.  The trails were originally designed for trains with the correct grade.

    Recommendation 8: Airships and electric aircraft

    Airship

    Airships are relatively inexpensive, they can carry a substantial amount of cargo, and they are significantly more environmentally friendly than their heavier-than-air relatives. Once thought to have passed into memory, airships are having something of a renaissance.

    • Over a decade ago, the International Air Transport Association (IATA) called specifically for cargo operators to embrace dirigibles to meet environmental targets. An airship is estimated to produce 80 to 90% fewer emissions than a conventional aircraft.

    Heavy Lift Cargo Airships:

    •             Made of aluminum frames- lightweight, solid, and proven
    •             Vertical take-off and landing
    •             Operates in strong front & cross wind conditions (50 Knots)
    •             Needs NO airport infrastructure/ground crew – operates on any flat space
    •             Burns 80 – 90% less fuel than equivalent aircraft
    •             Flies at 150-220 mph

    •             Costs 80-90% less than equivalent payload aircraft to purchase and operate
    •             Rivals in cost with truck or rail (point to point)
    •             At least 40 years working life expected

     Short Haul Passenger Airships, More environmentally friendly air travel:

    Airship journeys would take around the same time as airplane travel once getting to and from the airport is considered, however they would be a more environmentally friendly option. The airships generate a much smaller carbon footprint than airplanes. The CO2 footprint per passenger on its airship would be about 4.5kg compared with about 53kg via jet plane. Airships are ‘ideally suited to inter-city mobility applications like Seattle to Vancouver or Buffalo to New York City, at a tiny fraction of the emissions of current air options.

    With new flexible solar panels made part of the skin of the airship, and new electric motor and lightweight battery technology, not only could airship travel become a part of New York’s transportation infrastructure, but with the appropriate subsidies and incentives, manufacturers could be encouraged to relocate manufacturing to the State. 

    Electric Airplanes:

    Half of all global flights are shorter than 500 miles. That’s the sweet spot for electric aircraft. Fewer moving parts, less maintenance, and cheap(er) electricity means costs may fall by more than half to about $150 per hour For airlines, this makes entirely new routes now covered by car and train possible (and profitable) thanks to lower fuel, maintenance, and labor costs.

    Electric propulsion nearly solves another problem for aviation: carbon emissions. Aviation emits more than 2%  of the world’s CO2 emissions, and it may reach nearly a quarter by mid-century. With no alternative fuel ready to leave the ground, and the number of air passengers set to double by 2035, electricity may offer the industry its best way forward in a climate-constrained world.

    Conclusion:

    As New York sails into an uncertain, but surely dangerous, climate crisis, we can move steadily away from reliance on increasingly undependable fossil fuels, giant transnational companies, and international finances.  We can build energy, food, and economic redundancies into local communities to buffer them against international and national shortages and systems collapses. We can invest in our neighborhoods and our neighbors, working together to create “too small to fail” Main Street businesses, non-profits and local governments that strive in union to serve their communities and the people.

    None of this will insure us totally against the dangers ahead, but preparedness will give our state resilience and staying power. By acting now with foresight and hard work, we can care for each other, reinvesting in people and the land, creating a future for the Hudson Valley that emphasizes Earth Care, People Care and Fair Share.

    We can create organizational and institutional structures that are sustainable, endowed with ethical values that serve all citizens not only a privileged elite.  The emphasis will not be on blind, reckless progress at all cost, but on the creation of an equitable society that avoids resource depletion while fostering slow growth, and most importantly, hope for everyone, including the most vulnerable people and species. 

    Appendix 1. Low/No Carbon Maritime Resources:

    • International Windship Association: “The International Windship Association (IWSA) facilitates and promotes wind propulsion for commercial shipping worldwide and brings together all parties in the development of a wind-ship sector to shape industry and government attitudes and policies.”
      • Fairtransport : For 10 years we have shipped cargo across the Atlantic by the power of the wind alone!
    • Hudson River Maritime Museum: The Wooden Boat School was founded by the Hudson River Maritime Museum in 2015 to preserve the maritime craft traditions of the Hudson Valley and to teach a hands-on interpretation of the living history of the Hudson River.
    • Good Work Institute: The Good Work Institute’s mission is to cultivate, connect, and support a network of local community members who are fostering resilience and regeneration in the Hudson Valley.
    • Post Carbon Institute
    • New Dawn Traders Sail Cargo Alliance: New Dawn Traders is co-creating the Sail Cargo Alliance (SCA) to support a new and growing community interested in shipping ethical cargo under sail. Beyond building viable trade for these sailing vessels, the SCA is committed to setting the highest standards for ethics across the supply chain. This is an alliance of ship owners, brokers, producers and anyone interested in working together in a healthy transport culture.
    • Drawdown: Project Drawdown gathers and facilitates a broad coalition of researchers, scientists, graduate students, PhDs, post-docs, policy makers, business leaders and activists to assemble and present the best available information on climate solutions in order to describe their beneficial financial, social and environmental impact over the next thirty years.
    • Low Tech Magazine : Low-tech Magazine questions the blind belief in technological progress, and talks about the potential of past and often forgotten knowledge and technologies when it comes to designing a sustainable society. Interesting possibilities arise when you combine old technology with new knowledge and new materials, or when you apply old concepts and traditional knowledge to modern technology.
    • Zero Emission Ship Technology Association: Our Mission is to prevent catastrophic climate impacts by assisting commercial shipping to reduce emissions on a steep trajectory.
    • ECOCLIPPER: We are establishing a professional shipping company that offers emission free transport and travel, by making use of engine-less sailing ships. The start-up crew combines top maritime expertise that is relevant to the sailing cargo industry, decades of experience in business development and sound management expertise.
    • Sustainable Hudson Valley: Sustainable Hudson Valley’s mission is to speed up, scale up, jazz up and leverage progress against climate change, creating communities where people and nature thrive. With a wide range of partners,
    • Revolution Rickshaws: Established in 2005, Revolution Rickshaws is a live-electric urban vehicle (LUV) systems & services enterprise based in New York City. Revolution researches, develops, and maintains LUVs in partnership with multiple world-class industry brands including Cycles Maximus, our long-time bikemobile manufacturer and collaborator, to deliver optimal goods and services to market.
    • Sail Cargo Inc.: Our mission is to prove the value of clean shipping
      • Eliminating fossil fuels from the maritime sector is achievable by using advanced technology and simple techniques. We combine innovative, clean technologies with readily-available, low-cost, natural systems to create solutions for a range of needs: from supporting vulnerable coastal communities to moving commodities at global scale.
    • Original content, curated news, and articles: The Center for Post Carbon Logistics
    • Small-Scale Sail Freight On Coastal And Inland Waters, Author Steven Woods: Sail Freight has slowly worked its way into the realm of sustainability discourse as a way of reducing emissions from transportation, providing logistical solutions using the emissions free power of the wind and technologies proven effective for over 5000 years. This attitude toward Sail Freight and transportation in general has some merits, but none of these discussions seem to have examined the issue of readopting sail freight at scale.
    • New Age of Sail looks to slash massive maritime carbon emissions: If ocean shipping were a country, it would be the sixth-largest carbon emitter, releasing more CO2 annually than Germany. International shipping accounts for about 2.2% of all global greenhouse gas emissions, according to the U.N. International Maritime Organization.
    • Industries for Small Communities, Arthur E. Morgan: Morgan’s goal, through his life’s work and in the 1953 publication specifically, was to shift the prevailing mindset regarding small-scale industry. Then, as now, what Morgan termed “bigness” was glorified and small communities were rapidly losing young people to urban centers. Still, he knew that small businesses existed across the country, and that the communities that housed them could be vibrant and fulfilling places to live.

    Appendix 2.  Eriemax and Electric Clipper

    Eriemax, 80’ canal, river, and coastal sail freighter, Geoff Uttmark design

    Electric Clipper, 180-200’ short sea and trans-oceanic sail freighter, Derek Ellard design


    [1] Astroturfing is the practice of masking the sponsors of a message or organization (e.g., political, advertising, religious or public relations) to make it appear as though it originates from and is supported by grassroots participants.

    [2] The Council on behalf of the State must admit culpability.  The For the last fifty years the State of New York, the Governors, departments, the legislature, and its congressional representatives have had ample information, data, and scientific evidence of the impacts of a changing climate on the environment of New York, including but not limited to the impacts of  subsidies for road building over rail, urban sprawl, air and water pollution, and squandering of opportunities to mitigate or begin to adapt to the climate crisis that has been exacerbated by transportation policy and actions.

    [3] The Schooner Apollonia, Eriemax/ShipShares,  The Center for Post Carbon Logistics, , Sustainable Hudson Valley, RevX, and Solar Sal Boats, Martin, Ottaway, van Hemmen &Doyle, Inc,

    [4]The M-87 Route is the Hudson River, connecting commercial navigation channels such as the Erie Canal, ports, and harbors from New York City to Albany, NY. It spans eastern New York State. It connects to the M-90 Route at Albany, NY and the M-95 Route at New York City.

    [5] MARAD defines a small port as a coastal seaport, Great Lakes, or inland river port to and from which the average annual tonnage of cargo handled during the 3 calendar years immediately preceding the time of application is less than 8,000,000 short tons.

    [6] https://docs.google.com/spreadsheets/d/1J8PlvNw8ZvBGocHFcGX_Fj0xmy3gyn1WvveK_cb7OHE/edit#gid=899225407

    [7] Yildiz, F., Coogler, K. L., & Amador, R. (2015). Conversion of a gasoline powered boat to a hybrid electric boat. Journal of Engineering Technology, 32(1), 52-63. https://www.proquest.com/openview/cfd13c6dbb26ed0fdebc07560b680916/1?pq-origsite=gscholar&cbl=32062

    [8] Caprara, G., Martirano, L., & Balleta, C. (2020, June). Preliminary analysis of the conversion of a leisure boat into a battery electric vehicle (BEV). IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/9160492


    [i] Issues We Address:

    Looking forward rationally at all the indicators, the “business as usual” choice takes us down a road to cataclysmic food and energy shortages, transportation disruption, infrastructure failure, inundation from sea level rise, financial meltdowns and its attendant social disarray.

    Possible response strategies:

    We do These Things

    Preserve, knowledge:

    • The Center will house a traditional knowledge data base, library, and a pre/post carbon tool, technology, and machinery collection.  This activity is an ambitious effort to preserve, restore and promote the re-use of traditional skills.

    Movement Building, advocacy:

    • The Center promotes maritime, and first and last mile technology necessary for moving goods and people from place to place in a carbon constrained future.
    • The Center is an advocate for existing and emerging low carbon shipping and post carbon transportation businesses and organizations.
    • The Center is an advocate for appropriately sized working waterfronts in small to mid-sized ports throughout the the Hudson Valley, NY Harbor, Canals, and the Atlantic Coast.
    • The Center advocates for a transition that people will embrace as a collective adventure, as a common journey, as something positive.   Paraphrasing the title of Transition Town Rob Hopkins’ book, The Center for Post Carbon Logistics will be the embodiment of the “Power of Just Doing Stuff.”

    Train, individuals and organizations:

    • Partnering with other enterprises and organizations The Center will provide a physical place where professional practitioners and apprentices can participate in theory and practice workshops for preserving the skills of the past to serve the future
    • The Center will host regional, national, and international conferences on post carbon logistics, traditional skills, and sail freight
    • The Center will provide educational opportunities and creative, implementable, real world solutions to the 21st century environmental, economic, and social crises enabling people to work locally to transition our communities and bio-region away from a fossil fuel-based economy to a “restorative economy,” one that is human-scaled, embraces alternative locally based energy, and that is less extractive.

    [ii] Green Shipping Corridor:

    In April 2022 the US Department of State put out a Fact Sheet, Green Shipping Corridors.  That said in part:

    In support of the effort to achieve global net-zero greenhouse gas emissions by no later than 2050, and in support of the effort to achieve zero greenhouse gas emissions from the international shipping sector by the same year, the United States is charting a course to advance domestic and international green shipping corridors.

    [iii] This PC3PL providers is a vital part of maritime based supply chain management. 

    • Procurement:  ordering and receiving goods from purveyors in the supply chain. 
      • Order fulfillment and Consolidation: Receiving an order from customers and arranging for the orders to be completed and shipped.[iii] PC3PL will combine goods from multiple shipments into one shipment so they can be transported together.
      • Storage: Providing temporary storage for goods in warehouses or similar facilities.
      • Transportation and Distribution:[iii] Arranging for consolidation, management, and transportation of goods from the producer, to the first and last mile provider, drayage[iii] to and from a temporary storage or warehouse to the water-based transport of goods and point of destination. 
      • Moving goods between methods of transport

    To support this new logistics model certain data, need to be collected and analyzed based on previous and anticipated activities, this information includes but is not limited to:

    PC3PL will also offer a range of supplementary services including IT, inventory management, and reverse logistics,[iii] and tracking of goods using GPS and Internet of Things (IoT) devices

    [iv]The Marine Byways and Resilient Small Port Toolkit products will include but not be limited to:

    1. A review and analysis of the pros and cons of previous short sea and Hudson River maritime cargo transport projects including the Vermont Sail Freight ProjectAlbany Express Barge service, The Hudson River Corridor Foodway Project, and the project cargo business of the NY State Marine Highways Co.  
    2.  A compendium of pier/dock/bulkhead and navigation conditions, using field checks, existing and new photographs, and satellite images
    3. A review of New York City’s “Delivering Green” Plan to determine the location of appropriately sized small ship docks and piers, and accessibility for low/no carbon first and last mile logistics providers.
    4. Make available, existing and newly created GIS maps and charts of small and medium sized ports throughout the M-87 Marine Highway System for the use of mariners and port operators
    5.  port gazetteers[iv]
    6. Financing for port improvements
    7. Guidance for local communities to develop working waterfront zoning, deed restrictions, and easements
    8. links to sustainability and resilience resources.  
    9. links to local and regional naval architects, shipbuilders, and boat yards, as a resource for sail cargo and solar ferry entrepreneurs and public agencies with an interest in low/no carbon water transport of goods and people.
    10. A compendium of local, state, and federal agencies and what assistance they offer, and sources of funding for:
      1. planning assistance for small port improvements for low/no carbon commercial freight and passenger vessels.
      1. Assistance in the creation of working waterfront inventories
      1. Protecting existing working waterfronts through land conservation, easements, and deed restrictions.
      1. Building waterfront EV charging stations including electric boat and ship hook ups 
      1. Accommodate existing or potential low/no carbon first and last mile logistics providers, storage, and warehousing
      1.  Develop waterfront recreation compatible with port operations
      1. climate resilience projects, retreat strategies,
      1. wetlands and benthic habitat restoration/adaptation strategies,
      1. and sample Zoning ordinances to assist small port and riverfront towns to retain their water dependent businesses and ecological services. 

    [v] NYMTC Resiliency Planning

     NYMTC Freight Planning

    NYMTC Sustainability Planning

    NYMTC Regional Freight Report  

    Delivering Green, a NYC sustainable freight plan

    Final UCTC Year 2045 Long Range Transportation Plan

    Kingston NY Climate Action Plan 2030

    NY DEC Climate Action Plan

    (Mid) Hudson Regional Climate Action Strategy

    Rondout Riverport 2040

    Kingston, NY’s Weaving the Waterfront

    Scenic Hudson Sea Level Rise Reports,

    NY State Local Waterfront Revitalization Program

    National Working Waterfront Network

     Sustainable Working Waterfronts Toolkit 

    financial and port and docking information gathered by the Schooner Apollonia’s multi-port cargo operation,

    interviews with local, county, state, and federal transportation, and economic development agency officials,

    materials developed by non-governmental organizations,

    navigation, port, and logistics information from contemporary and historic sources (including the Hudson River Maritime Museum Collections)  

    Interviews with farmers, food processors, brewers, distillers, and small local manufacturers, makers, and logistics providers

    interviews with local, county, state, and federal transportation, agriculture, and economic development officials,

    materials developed by non-governmental organizations,

    navigation, port, and logistics information from contemporary and historic sources  

    [vi] DRT a form of shared private or quasi-public transport for groups traveling where vehicles alter their routes each journey based on particular transport demand without using a fixed route or timetabled journeys. These vehicles typically pick-up and drop-off passengers in locations according to passengers needs and can include taxis, buses or other vehicles.

    One of the most widespread types of demand-responsive transport (DRT) is to provide a public transport service in areas of low passenger demand where a regular bus service is not considered to be financially viable, such as rural and peri-urban areas. 

    [vii] Electric Trains vs. Diesel Trains:

    Though trains are more efficient than trucks, not all trains are equally efficient. Diesel-powered trains transfer about 30-35 percent of the energy generated by combustion to the wheels, while supplying electricity directly from an overhead powerline transfer about 95 percent of the energy to the wheels. Powering trains with electricity rather than diesel has several other benefits.

    • While prices of diesel fuel are currently low, many analysts predict that the long-term trend is for those prices to increase. Conversely, prices of electricity are falling with the fast-growing use of renewable energy sources. Even at current prices, with the energy conversion rates mentioned above, it is estimated that it is 50 percent less expensive to power a train by electricity than by diesel.
    • The cost of electric locomotive engines is about 20 percent less than diesel locomotive engines on the global market, and maintenance costs are 25-35 percent less than for diesel engines.
    • Eliminating diesel-powered locomotives would reduce air pollution including soot, volatile organic compounds, nitrogen oxides, and sulfur oxides, all of which affect public health as well as the environment. This is especially important as many railroads pass through urban areas. It would also reduce noise levels in cities, as well as traffic deaths due to trucks (rail freight causes only about one-eighth as many fatalities as truck freight per ton-mile).
    • Switching from diesel to electricity would also help address the challenge of replacing petroleum-based liquid transportation fuels with cleaner alternatives as we seek to lower our greenhouse gas emissions.

    [viii] Are solar trains feasible?

    In research focused on providing solar power to electric trains, it is enlightening how efficient this transportation mode can really be.  Electric trains are 50 percent to 75 percent less polluting than single-passenger cars and trucks and use comparably less energy per passenger-mile, according to a 2009 detailed analysis by Chester and Horvath.

    Electric trains are so efficient that a single 300-watt solar panel (about 4×6 feet) can provide up to 7,000 miles of an individual’s commuting miles per year, or 5 to 20 miles per day. The national average, based on National Transportation Database data on the efficiency of the various U.S. electric train systems, is about 4,000 miles per year for each 300-watt solar panel. One mile of train tracks can support 1 megawatt to 3 megawatts of solar panels, which can provide 2 million and 6 million passenger-miles of train travel.

    Wind power is another obvious option for powering electric trains with on-site renewables — where there are strong wind resources. Distributed wind has not taken off in the U.S. anywhere near to the degree that distributed solar has, but it could be a viable option in many circumstances, particularly where there are state rebates to offset the cost of wind turbines. Wind power in desirable locations is still cheaper than power from solar panels and can also complement solar power by producing power at night.

  • Building Future Proof Liberty Ships

    Locally built, from locally sourced and recycled materials, crewed with locally trained mariners, home ported along the Hudson, the Harbor, and the canals, carrying locally grown, locally processed, and locally manufactured goods – with liberty from fossil fuels, these future proof ships will be a positive disruption to the status quo.

    Future Proof Liberty Ships Brutally Simple

    WW II Liberty Ship

    Liberty ships were a class of cargo ships built in the United States during World War II The design was adopted by the United States for its simple, low-cost construction. Mass-produced on an unprecedented scale, the Liberty ship came to symbolize U.S. wartime industrial output. The immensity of the effort, the number of ships built, the role of women and minority shipwrights in their construction, and the survival of some far longer than their original five-year design life are a testament to what is possible to do when confronted with an emergency. At the peak of production yards were turning out 2-3 ships a day with a 40-day build time.

    To meet the emergent climate crisis, and to confront the immense carbon pollution of the existing fossil fueled international and domestic fleet, “future proof” Liberty from Fossil Fuel Ships will be built in US yards to enable us to continue the movement of goods and people from place to place in a carbon constrained future.

    These ships will be brutally simple, but elegant, built by aa new generation of shipwrights to kick start the revival of US flagged ships in international and domestic trade. Using proven construction techniques and tried and true (as well as innovative) sail propulsion/electric propulsion technology these “flagships of the future” will be the first steps in adapting to and mitigating the climate crisis, that in significant part is caused by international and domestic shipping.

    Why These Ships and Why Now?

    Polluting Ship

    The international shipping industry is one of the largest greenhouse gas emitters. If the maritime sector were a country, it would be one of the top six carbon polluters.  The shipping industry has been reluctant to take unilateral leadership on emissions.  The International Maritime Organization (IMO) is puttering around the edges. It recently declined to make a greenhouse gas reduction plan or commitment. 

    The Center for Post Carbon Logistics (C4PCL), along with a local, regional, and international coalition posit an alternative.  That alternative is disruptive competition from an emerging suite of technologies – hydrogen, solar, and wind/sail powered shipping on New York waterways.  Water-borne shipping, even now, is dramatically more energy-efficient than its land-based counterpart.  New York, with its network of waterways connecting the Great Lakes to the Hudson, to New York Harbor, and the ocean, has a leadership opportunity in growing this industry.

    In New York, achieving the State Climate Act’s goals will require addressing the enormous footprint of transporting goods and people from place to place using fossil fuels.  Building Future Proof Liberty ships in New York Hudson River shipyards is the first step toward a regenerative shipping industry on New York’s canals, the Hudson River, The Harbor, the East Coast, Caribbean, and transatlantic routes.

    The Hudson River, a Water Highway

    Not so long ago the Hudson River was a bustling highway linking even the smallest communities to a web of regularly scheduled commercial routes. Schooners, sloops, barges, and (much later) steamboats provided a unique way of life for early river town inhabitants. Farmers, merchants, and oystermen relied on this vibrant and diverse fleet of vessels to bring in supplies and deliver their goods to market. This arm-of-the-sea was an integral part of the lives of those who worked New York’s inland waters.

    Sloops at Anthon’s Nose

    The Hudson River sloop was the main means of transportation on the Hudson River from the early days of Dutch settlement in the 17th century (1600s) until the advent of the steamboat.  Based on a Dutch design, this single-masted sailboat carried passengers and cargoes up and

    down the Hudson River between New York and Albany and points in between for over two hundred years From The Hudson River Maritime Museum Blog

    Hudson River Sloop Clearwater
    Ferry Sloop Woody Guthrie

    The legacy of these sailing cargo vessels continues in the iconic Sloop Clearwater and the organization that supports it. The “Ferry Sloop” Woody Guthrie is another example of both the historic nature of those ships and the skills that it takes to sail, maintain, and rebuild when necessary. A complete rebuild of the Woody Guthrie, and three restorations of Clearwater were performed at the shipyard at the Hudson River Maritime Museum, in the last few years, by Rondout Woodworking in conjunction with the Museum’s Wooden Boat School staff and volunteers

    Precursors, Prototypes, and Disruptors

    Vermont Sail Freight, the Vessel Ceres,

    “Contrary to the techno-paradise that some expect, my belief is that our future will likely resemble our past, and that we may fall back on proven, low energy approaches to supporting human life that have been historically proven to work.  “Isn’t that pessimistic?” asked the interviewer. I replied that I don’t think so. It is in my view even more pessimistic to imagine a world continuing on the current path, becoming a place in which there is no place for human labor or creativity, where rather than doing things with our backs and hands and minds, we must instead wait passively for conveniences and solutions to be marketed to us. That, to me, is the most depressing future imaginable.” — Erik Andrus Founder the Vermont Sail Freight Project

    Vermont Sail Freight Vessel Ceres

    While others were writing and talking about reviving sail freight on the Hudson and the Canals, Erik Andrus, a Vermont Rice farmer was building a sailing freight barge. Erik sells baked goods produced on the farm at farmers markets in the Vermont communities adjacent to Lake Champlain and realized that he was delivering the locally produced organic and farm baked goods in a fossil fuel truck. He immediately began to research horse drawn bread trucks and built one.

    Taking this idea to the next stage, he envisioned floating his and his neighbors farm goods down the Hudson on rafts until he researched the difficulties of doing so and conceived of the Vermont Sail Freight Project. Beginning in 2012, the Vermont Sail Freight volunteers, led by Erik, designed, and built a 15-ton capacity sailing barge and raised funds for her construction from grants, donations, and pre-sale of cargo items.  The Ceres was launched on July 27, 2013 and was ready to journey downriver with cargo in October 2013.  This was made possible in part by the participation of Greenhorns, USA and by the support of the Eastman and Waterwheel Foundations.  In October 2013, $56,000 worth of products from small farms in the north were delivered and distributed along the Champlain-Hudson waterway at farmers’ markets and through events and wholesale accounts. Although Ceres’ last voyage was in 2014 its legacy and Erik’s vision is the foundation on which moving goods and people in a carbon constrained future will be built.

    Eriemax

    In 2011 two cities on the Erie / NYS Barge Canal were among U.S communities that lost the most population the previous decade. Naval architect, Geoff Uttmark’s NYSERDA funded Eriemaxship design and HEFTTCo. business plan was developed ” to stimulate growth by creating a green, lower cost trade route using ship-kit, electric powered, owner-operated small freight ships.”

    Although the ship itself was not built, the rigorous analysis, of the cost of building, cargo handling, crewing, and port infrastructure requirements, are still viable models for the evaluation of wind and alternative fuel cargo carrying on the Hudson, and Canals.

    Uttmark’s Ship Shares initiative is a comprehensive conduit for maritime development, education, networking, and support of not-for-profits inspiring tomorrow’s marine industry leaders.

    ERiemax HEFTCO Business Plan Summary

    “Our Vision is to lead impact investing in the marine shipping space. We do this by leading or joining design of seaborne transport initiatives that have strong social and environmental merit in addition to positive traditional financial metrics, and by research, design and identification of potential “game-changer” technologies that can span multiple shipping sectors. Our emphasis in all endeavors is to advance local or regional social benefit projects or disruptive technologies with world-class expertise and world-wide capital to maximize the impact of invested human and financial resources.”

    The Schooner Apollonia and the Solar Electric Solaris

    The Schooner Apollonia is engaged in commerce under sail on the Hudson River and New York Harbor.

    Schooner Apollonia

    Apollonia is a 64-foot steel-hulled schooner built in Baltimore, MD in 1946. She is designed to move efficiently through the water, powered by a traditional gaff-rig sail plan designed by naval architect J Murray Watts.  With a 15’ beam and rugged steel construction, she’s a stout work boat capable of carrying 20,000 lbs. of cargo. Being a schooner, the crew requirements are smaller, and the variety of sails gives us flexibility for different conditions that we will encounter on the river.

    On her most recent trip to New York City from Hudson, she carried a mixed load of cargo including bags of grains and malted barley for breweries along the River. When access to a dock was limited, cargo bikes were used for “last mile logistics.” On her return trip she carried a variety of French wines and chocolates cross docked from the ocean sailing freighter Grain de Sail during a meet up in Brooklyn. Securing funds for needed upgrades, and financial stability is a primary goal of the Liberty from Fossil Fuel Ships initiative.

    The Hudson River Maritime Museum’s solar electric Coast Guard inspected passenger vessel Solaris has proven its seaworthiness and efficacy over the last three seasons. Solaris is a classic “launch” design adapted to her 21st century solar electric propulsion system. Solaris is a pioneering example of near future ferries, larger passenger vessels, and self-propelled canal barges. Conceived of by David Borton, designed by Dave Gerr, and built by Rondout Woodworking at the Wooden Boat School, she is the working prototype for a class of solar electric commercial vessels.

    Solar Electric Passenger Vessel Solaris

    The Hudson River Maritime Museum recently received a grant to build a dock in Rhinecliff, NY’s Amtrak train station to begin a ferry service to Kingston and The new State Park in North Kingston. Support for Solaris’ maintenance and financial security is also a priority of the Liberty from Fossil Fuel Ships Initiative.

    Liberty from Fossil Fuel Ship Prototypes

    Five prototypes are proposed to be R&D’d, designed, financed, and built in Hudson Valley, NY shipyards: examples include, but are not limited to, a 180′ “short sea,” coastal, transatlantic, and/or Caribbean electric clipper, a 65′ river and coastal Sharpie Schooner, a “39′-45′ pick up of the sea,” “Eriemax” 80′ River, Canal, and Coastal Sail Freighter, and a solar electric canal barge.

    180’Electric Clipper

    65’Sharpie Schooner

    39′ – 45′ “pickup of the sea”
    Eriemax 80′ River, Canal, and Coastal Sail/Electric Freighter Geoff Uttmark design
    Solar Electric Canal Barge

    Look for Blog Posts and Articles on R & D, design, financing, and building these prototypes and a March 2022 Sail Freight Conference at the Hudson River Maritime Museum.

  • New age of sail looks to slash massive maritime carbon emissions

    Originally Posted on Mongabay News & Inspiration, Mongabay Series: Covering the CommonsOceansPlanetary Boundaries March 15 2021, Author Andrew Willner

    Mongabay video New Age of Sail is available here.

    Schooner Apollonia a Hudson River Sail Freight vessel operating now

    • If ocean shipping were a country, it would be the sixth-largest carbon emitter, releasing more CO2 annually than Germany. International shipping accounts for about 2.2% of all global greenhouse gas emissions, according to the U.N. International Maritime Organization.
    • But change is on the way. Wind, solar electric, and hydrogen-powered ships offer innovative low- or no-carbon alternatives to fossil fuel-powered cargo vessels, with wind about to make a huge comeback in shipping, say experts. New experimental sail designs include hard sails, rotating vertical cylinders, and even kites.
    • Today, startup companies like Fair Transport (with its retrofitted wooden vessels Tres Hombres and Nordlys); modest sized proof-of-concept firms, with purpose-built vessels like Grain de Sail; and large cargo ship retrofits and purpose-built vessels like Neoline’s new large cargo vessels, are starting to address CO2 emissions.
    • Through the late 1940s, huge steel sailing ships carried cargos on some ocean routes. By 2030 — less than 100 years since the end of the last great era of sail — fossil fuel-powered cargo vessels may give way to high- and (s)low-tech sailing ships thanks to a revolution in energy technology, that reduces shipping costs with less emissions.

    In January 2010, an “unpowered” wooden sailing vessel more than 70 years old, the Tres Hombres, arrived in Port-au-Prince carrying desperately needed earthquake relief supplies from Dutch humanitarian organizations for the people of Haiti. Although not the first contemporary version of “green logistics,” Tres Hombres — propelled by a trio of clean energy technologies: sails, wind turbines and recycled vegetable oil — epitomized the entrepreneurial spirit of today’s retro-revolutionary sail freight movement.

    To many maritime experts, Tres Hombres’ cross-ocean journey stands out as a symbol of the rebirth of cargo-carrying wind power — incorporating a marriage of old and new technologies becoming a viable alternative to fossil fuel-powered ships on the open sea.

    Today’s gigantic diesel fuel-reliant container ships, decks overloaded with cargo, are still a common sight in harbors from New York to Hong Kong. But the days of these gargantuan vessels, driven by massive internal combustion engines, may be numbered.

    The engineless modern cargo transport sailing ship Tres Hombres. Image courtesy of Fair Transport.
    Sails that don’t look like sails: Wallenius Marine is developing the Oceanbird, able to ship 7,000 cars and trucks across the Atlantic propelled only by high-tech wing sails. Image courtesy of Wallnius Marine.

    An economic and climate driven sea change

    Despite the present dominance of fossil-fueled cargo ships, it’s well understood by industry insiders that the current maritime logistics system is both aging and fragile.

    Fossil fuel transport today is up against a grim carbon reality: if ocean shipping were a country, it would be the sixth-largest carbon emitter, releasing more CO2 annually than Germany. International shipping accounts for about 2.2% of all global greenhouse gas emissions, according to the U.N. International Maritime Organization’s most recent data.

    This annual surge of atmospheric carbon released by ocean going ships not only worsens climate change — one of nine scientifically defined planetary boundaries (PBs) we now risk overshooting — it also contributes to ocean acidification (a second planetary boundary) which is beginning to seriously impact biodiversity (a third PB). And add to that significant chemical pollution (a fourth planetary boundary) that is emitted from ship smokestacks.

    All of these planetary boundaries interrelate and influence one another (negatively and positively): for example, reducing black carbon (or soot), the fine particulate matter emitted from fossil fueled oceangoing vessels could slow global warming somewhat, buying time to implement further steps to reduce carbon emissions.

    A loaded fossil fueled container ship docked in Hamburg, Germany. Image found on Visualhunt.

    Another problem with today’s vessels: when cargo ships dock, they use auxiliary engines that generate SOx, NOx, CO2 and particulate discharges, while also creating noxious noise and vibrations. (Innovators are already solving this problem with cold ironing, providing shoreside electrical power to ship berths, allowing main and auxiliary engines to be shut down.)

    Today’s cargo industry is plagued not only by environmental issues, but by a difficult logistical and economic problem: its current fleet of fossil-fueled container ships are mostly behemoths — with immense carrying capacities. However, the “overcapacity” of these giant ships leaves them without the nimbleness to adapt to unexpected shifts in global supply and demand; the world’s ports and specialized markets could likely be better served, say experts, by smaller, far more fuel-efficient cargo ships.

    The current sea cargo system — reliant upon high-priced carbon-based fuels and unstable energy markets; interwoven inextricably into long-distance, globalized world trade; and designed for just-in-time delivery that requires precisely scheduled shipments — is increasingly vulnerable to the vagaries of fossil fuel shortages, price shocks and surges, as well as geopolitical conflict and volatility in the Middle East, Venezuela and elsewhere.

    Equally problematic, today’s fossil-fueled ships depend upon an ability to avoid paying for negative externalities such as carbon emissions and environmental pollution, while also being governed by lax international labor, environmental, health, and other agreements.

    Winds of change, especially triggered by new international commerce and climate pacts and policies, could soon push us rapidly beyond carbon into a New Age of Sail, with the need for a planet-wide cargo fleet rebuilt from the keel up.

    Airbus plans to equip one of its large cargo ships with the Airseas “Seawing,” a sky sail that uses wind power to reduce fossil fuel costs and cut emissions. Image courtesy of AIRSEAS.

    Birth pangs for a New Era of Sail

    As far back as the 1970s, the global shipping industry began struggling with both its business models and environmental issues. Oil embargoes in 1973-74, the failure of US Lines in 1986, and surging fuel prices in the 1970s and ’80s led some transport companies to start experimenting with sail-assisted technology on tankers and container ships to save costs and reduce emissions. By the 1980s, Japanese shippers had designed new and retrofitted sail-assisted merchant ships.https://www.youtube.com/embed/U250mCuxPPw

    In 2018, in response to environmental concerns, the International Maritime Organization (IMO) adopted mandatory measures under an umbrella of policies to reduce greenhouse gas emissions produced by international shipping: under the IMO’s pollution prevention treaty (MARPOL); the Energy Efficiency Design Index (EEDI), which is mandatory for new ships; and the Ship Energy Efficiency Management Plan (SEEMP). Many of these mandated changes go into effect by 2030, less than 10 years from now.

    An embrace of old technologies, made new

    Facing these many challenges, the big question for the cargo industry is: how does it get to a new age of post-carbon shipping and sailing, with the least amount of economic pain?

    In fact, change is happening now — fast — as sailing vessels get put on the water by startup companies, like Fair Transport, with its retrofit wooden vessels; by modest sized proof-of-concept companies like the Schooner Apollonia; and by firms with newly built ocean-crossing sailing ships like Grain de Sail; and lastly by large cargo ship companies launching innovative retrofits and purpose-built vessels like Neoline’s new large cargo vessels.Video here about Fairtransport Cargo under sail.

    All of these innovators embrace different technological approaches to address the same problems of CO2 emissions, the high cost of fossil fuels, and new global economic and regulatory realities.

    Wind propulsion systems cover a wide spectrum in modern commercial shipping,. These range from wind-assisted fossil-fueled vessels (where wind provides auxiliary power), to purely wind-driven ships without auxiliary power, to sailing-hybrid ships where the primary propulsion come from the wind but is augmented by engines to ensure schedules are maintained.

    Internationally, the growth in small- to medium-sized sail freight companies has been exponential, with old sailing vessels brought up to modern standards and new ones built. The New Dawn Traders website, for example, includes links to several startup sail cargo ventures:

    Fair Transport’s 32-meter (105-foot) schooner Tres Hombres has been sailing emissions-free since December 2009. She maintains a sustainable oceangoing general cargo route between Europe, Atlantic and Caribbean islands, and the Americas. Her cargo capacity tops 35 tons, and she can accommodate a crew of seven professionals and eight trainees. (Training is vital, as today’s sailors need to be taught a combo of yesteryear and cutting-edge sailing skills).

    Fair Transport has added to its sailing fleet: Nordlys is a 25-meter (82-foot) ketch, built in the Isle of Wight in 1873 as a fishing trawler; she now carries up to 30 tons of cargo between European ports.

    Avontuur-Timbercoast is a two-masted gaff-rigged schooner built in 1920 in the Netherlands, and regarded as one of the last true cargo sailing ships of the 20th century. It’s goal today: “Mission Zero — to eliminate pollution caused by shipping cargo.”

    The Sailing Vessel Kwai was built in 1950 as a herring fishing vessel in Bremen, Germany. Refitted, she is 43 meters (140 feet) long and can carry 250 tons. She presently serves as a packet vessel in the tropics, sailing between Hawai‘i and the Cook Islands.

    Ceiba-Sail Cargo Inc. transports freight using a sustainable carbon-neutral sailing system. Its first ship, CEIBA, will offer something special to exporters and importers: an eco-friendly means of moving their most important organic, sustainable products.

    The Hawila Project also offers an environmentally friendly way of shipping organic goods between small coastal communities, especially European producers. The vessel can transport 55 tons of cargo using only wind power.

    Grain de Sail combines the best of old and new. It is a freshly built 24-meter (80-foot), 35-ton-capacity schooner with a state-of-the-art climate- and stability-controlled hull for maintaining fragile goods. Sail powered, it is equipped with cutting-edge navigation technologies and made out of aluminum for a better weight/performance ratio and greater durability. In December 2020, Grain de Sail unloaded a shipment of wine and cognac at the Brooklyn Navy Yard, becoming the first ocean-crossing sail cargo ship to unload cargo in New York since the schooner Black Seal delivered cocoa beans by sail to Mast Brothers chocolate makers in 2011.

    Of these startups and proof-of-concept vessels, Jorne Langelaan, a veteran of Fair Transport’s sail cargo venture, may possess the boldest old-new sailing concept. Ecoclipper, when built, will be a big new “square rigger” and full-sized replica of the Dutch cargo ship Noach, built in 1857 — with an equally big mission. “She is to be operated in the deep-sea trade: Trans-Atlantic, Trans-Pacific and around the world,” says her promoter. She’ll be rigged with three square-rigged masts, boasting 930 square meters (10,000 square feet) of sail, “traveling without mechanical propulsion,” and able to transport up to 500 gross register tonnage (GRT) of cargo.

    The Alcyone, Jacques Cousteau’s turbo sail ship, a research vessel launched in 1985, and precursor of today’s rotor sail cargo ships. Image courtesy of Cousteau.org.

    High-tech innovations

    Maybe among the most unique innovations in the cargo shipping sector today are sails that look less and less like traditional sails. Known as sail-assisted or wind-assisted propulsion devices, the concept often is to fit existing fossil-fueled vessels with a variety of new sail technologies that offer a boost in power while cutting carbon emissions.

    These cutting-edge approaches include wing sails, which are inflatable; “hard sails” which look like an airplane wing set up vertically; “Flettner” vertical rotor sails that resemble smokestacks (but which use the Magnus effect, a force acting on a spinning body in a moving airstream); the Dynarig, “a state-of-the-art, modern, high-tech rig, relying on the use of cutting edge, high-strength materials currently used on high-performance racing yachts”;  and sail-assist kites or sky sails that look and act like hang gliders, launched from a ship’s bow with a cable to help pull the vessel downwind.

    https://www.youtube.com/embed/9ejpyIWINgc

    Neoline is a company capitalizing on new sail technology it says is “immediately available and [a] powerful enough solution to propel cargo ships.” The firm is already finding its eco-niche, establishing shipping contracts with tiremaker Michelin and automaker Renault, along with other companies looking to reduce their carbon footprint. The Viking Grace ferry, which sails the Baltic Sea, is equipped with Norsepower’s Flettner rotor sail, which provides clean, auxiliary power. Wallenius Marine is developing the Oceanbird, able to ship 7,000 cars and trucks across the Atlantic propelled only by high-tech wing sails.

    These and other innovators have joined together in the International Windship Alliance, a gathering of new technology companies, ship builders, and shippers of all sizes who are changing the face of ocean shipping, replacing smoky fossil-fueled “dinosaurs” with nimble, “back to the future” sailing, sail assist, solarelectric and alternative fuel vessels.https://www.youtube.com/embed/GkTsnjIYJG8

    To learn more about the New Age of Sail, look into Jan Lundberg’s Sail Transport Network, Dmitry Orlov’s insightful writings, Gavin Allwright and the International Windship Association, Madadh MacLAine and the Zero Emissions Ship Technology Association, and Di Gilpin’s Smart Green Shipping.

    https://www.youtube.com/embed/JFPcZZR7oa8

    The New Age of Sail isn’t only evolving on the high seas: Lane Briggs’ Tugantine, Erik Andrus and Vermont Sail Freight, and Maine Sail Freight, are all forerunners of an epochal change underway in the way goods and people are moved along inland rivers and in coastal waters in a post-carbon era.https://www.youtube.com/embed/n-p9akU8MIc

    As fossil fuels grow scarce and expensive, sailing ships and alternatively powered vessels will replace fossil-fueled shipping, and the new ideas are seemingly endless: hemp and other cellulose-based plastics can replace fiberglass and other synthetic hull and sail materials; ships will ride above the waves on hydrofoils, maybe replacing airline high-speed passenger service; and many more small river, estuary and ocean ports will be renovated and updated to create an “internet” of coastal and island-linked small- to mid-sized shipping lanes.

    New vessels will also require a different type of port: electric and people-powered first- and last-mile logistics, with old skills of seafaring, ship-keeping, and shipbuilding preserved, renewed and intermixed with 21st century know-how.

    We are fast entering a world of sail, battery, and hydrogen; cargo shipping beyond carbon.

    Before he died in 1947, Gustaf Erikson, who ran a fleet of Baltic Sea windjammers in the Åland Islands, “was fond of telling anyone who would listen that a new golden age for sailing ships was on the horizon: sooner or later, he insisted, the world’s supply of coal and oil would run out, steam and diesel engines would become so many lumps of metal fit only for salvage, and those who still knew how to haul freight across the ocean with only the wind for power would have the seas, and the world’s cargoes, all to themselves.”

    That imagined day has nearly arrived.

    Andrew Willner is a former boatbuilder, sailing vessel master, and retired NY-NJ Baykeeper, who in 2013-14 was recruited as a volunteer aboard the Vermont Sail Freight sailing barge Ceres built by Erik Andrus in his Vermont barn. The Ceres made two successful voyages from Burlington on Lake Champlain, traveling down the Hudson River to New York City with a shelf-stable cargo of high-value farm products, sold at pop-up markets at ports along the way and at the New Amsterdam Market final destination. Willner is also executive director of the Center for Post Carbon Logistics.

  • Rondout Riverport 2040

    A Post Carbon Gateway to the Hudson Valley and the World

     A Comprehensive Plan for a Working Waterfront and the Transportation of Goods and People in a Carbon Constrained Future

    Summary:

    Rondout Riverport 2040 proposes a pragmatic, positive, and prosperous vision for the near future in which the communities of Kingston and Esopus are enriched by a transformed port, boasting a shoreline synergy of leading-edge maritime commerce and working waterfront technologies that profit and engage individuals, businesses and communities, allowing for an equitable transition beyond fossil fuels, as together we forge a vital and vibrant economic bond with the greater Hudson Valley Bioregion.

    Over the next twenty years, Rondout Riverport 2040 offers the communities of Kingston and Esopus an extraordinary opportunity and vision for remaking and transforming the Rondout Creek and Hudson River Working Waterfront.

    Rondout Riverport 2040 provides a trailblazing and sustainable development template for our community, harnessing and enhancing our region’s widely shared prosperity, even as we enter into an economically demanding carbon-constrained future.

    The Riverport in 2040, as envisioned here, will offer far more capacity, while being significantly more compact in land area, more robust, and resilient than the current patchwork of diffuse land uses found on today’s waterfront. The core mission of tomorrow’s port is the post carbon maritime transport of goods and people up and down the Hudson River and beyond. The Riverport, as imagined here, is designed to attract shipping, distribution, commerce, hospitality, and craft businesses, creating a dynamic collaboration and nexus for optimized local and regional market productivity. The result: an economically, culturally and environmentally resilient post carbon working waterfront — a gateway to the Hudson Valley and world.

    Think of Rondout Riverport 2040 as a signature project benefiting from the creative contributions of its many partner organizations, local governments, and institutions to address and transcend the near future threats of sea level rise; increasingly turbulent extreme weather events; and unexpected global, national and regional economic shocks. The port’s versatility will depend on the linking of its economic opportunities with environmental restoration and sustainable commerce. Embracing this multi-generational project will also be a source of inspiration for broader long-term action on climate change.

    We can best accomplish these visionary waterfront goals via an integrated “placemaking” approach. Placemaking provides a method for answering critical questions: What are the best ways to mobilize and coordinate our many community assets? How do we effectively draw on public and private partnerships to creatively identify opportunities? How can we successfully coordinate our implementation efforts? And where do we find the resources needed to accomplish our vision for a transformed riverport?

    We don’t have to wait until 2040 to start benefiting. Communities can begin now, as they participate in a vigorous planning process, while taking key steps for future proofing our shoreline against the harms threatened by a more politically, economically, and environmentally chaotic planet in a post-carbon future. The path to a bright, sustainable future starts with community engagement and data collection to build an actionable vision for the Rondout Riverport, a vision that incorporates a proud sense of community and place, local stewardship, and widely shared economic opportunity. The choice is ours.

     A Vision for Rondout Riverport Working Waterfront, circa 2040

    Imagine: It is a hot, late autumn day along the Hudson in 2040. From the rooftop of a trading house in Kingston, a ship spotter sees the topmast of a large sloop. The sloop signals a waiting solar tug, the Augustin Mouchot, which tows the engineless sailing ship toward a berth in the newly completed Rondout Riverport Inner Harbor.  

    The sloop, the Pete Seeger, is loaded with high-value cargo from abroad, transferred in New York Harbor from the oceangoing post carbon Eco-Clipper, Jorne Langelaan. The mixed freight consists of Caribbean fair-trade coffee and cocoa beans bound for the Hudson Valley’s roasters and chocolatiers, along with preserved tropical fruits and rum destined for local Kingston stores. The Seeger’s crew put a harbor furl on the hemp cloth sails, even as other crew members ready the on-board cargo gear. The sailors open hatches and set up the onboard cargo boom which will do most of the heavy lifting. The crew can also access the harbor’s floating cargo cranes for heavier or bulkier freight. 

    These locally trained young seafarers are in good spirits, looking forward to spending some time ashore, and to a few drinks of locally made brew, cider, and spirits. Like any sailors, they are also hungry and ready for a good meal at a tavern — the local fare includes dishes harvested from the Hudson’s new artisan fishery and from oyster beds seeded in shallows created by former piers and abandoned roads, submerged downriver over the last 20 years due to climate change’s rising seas and increasing river levels. After dinner the sailors walk along the sea-life-encrusted seawall, built from repurposed concrete and stone from former waterfront byways, buildings, and piers inundated by the Hudson’s rising waters.

    A longshore crew, warehouse workers, drovers and their electric-assist people-powered tricycles and wagons converge at the waterfront’s new storm-proofed floating dock — which rises and falls with surging tides. Cargo surveyors assist with the unloading of the coastal Schooner, Sam Merrett down from Maine with a load of lobsters. The square foremast tops’le Schooner Kevin Kerr Jones is unloading citrus from Savannah. Other stevedores are loading the solar electric Feeney shipyard built canal barge David Borton, bound for ports up the Hudson River with a final destination at Buffalo. Some smaller solar barges are loading for Port Jervis, then on to the newly opened Delaware and Hudson Canal. 

    The (s)low tech Rondout Riverport is modern and efficient. The port is no longer dependent on prohibitively expensive fossil fuels, nor the notoriously unreliable overseas energy supply chain. Instead, Roundout makes the best use of old and new — tried and true 19th century technology blended seamlessly with 21st century solar and battery electric gear and vehicles. More people are at work today on the waterfront than at any time since the 1920s; there are more warehouses and trading houses, shipbuilding, repair facilities, and docking facilities than at any time in the Rondout’s nautical history.

    Bronze foundry

    Just behind the waterfront are coopers using sustainably harvested local oak,  sail and ropemakers utilizing New York hemp; forges and foundries use concentrated solar heat to form bronze fittings. Riggers are hard at work in ropewalks making running rigging and dock lines to equip the numerous commercial and recreational sailing ships and boats. Dry docks and shipyards look out on bikeways and walkways circumscribing the tidal flats, from which hundreds of locals and tourists observe the port activity, safe in the knowledge that food and goods continue to pour into a port that — thanks to good planning 20 years ago — is well adapted to keep pace with a changing climate and evolving post carbon economy. All of this could be, if only we take a can-do proactive approach toward tomorrow.

    Slar Canal Boat

    Reinvigorated Waterways

    The Foundation of a Resilience Strategy

    Contrary to the techno-paradise that some expect, my belief is that our future will likely resemble our past, and that we may fall back on proven, low energy approaches to supporting human life that have been historically proven to work.  “Isn’t that pessimistic?” asked the interviewer. I replied that I don’t think so. It is in my view even more pessimistic to imagine a world continuing on the current path, becoming a place in which there is no place for human labor or creativity, where rather than doing things with our backs and hands and minds, we must instead wait passively for conveniences and solutions to be marketed to us. That, to me, is the most depressing future imaginable. — Erik Andrus Founder the Vermont Sail Freight Project

    Not so long ago, in the 19th and early 20th centuries, the Hudson River bustled with commerce and lay at the heart of a thriving network of marine highways linking the large cities and smallest communities to a web of regularly scheduled transportation routes — waterways stretching from the Atlantic west to the Great Lakes. Boats of all sizes served local cargo and passenger needs: schooners, sloops, barges, and steamboats connected river town inhabitants. Farmers, merchants, and oystermen relied on this vibrant and diverse fleet to deliver goods to market and to bring back supplies. The Hudson River — and the ships and boats sailing her — were vital and integral to those who worked, lived and thrived along our inland waters, putting places like Kingston and Esopus on the map. Historically, thousands of vessels plied these marine highways, sailing up and down the Hudson Valley, delivering fresh local farm produce ranging from apples to applejack, fish and shellfish, and carrying passengers to ports along the way

    View near Anthony’s nose

    The Kingston and Esopus’ Rondout Creek and Hudson River Working Waterfront has long been a key contributor to our region’s financial wellbeing — though it could be so much more. Now, as we enter a carbon constrained future our Riverport is poised for rebirth, to again become a key regional hub for the transport of goods and people. As we move into a world facing increasingly tough political, economic, and environmental challenges, we must ask ourselves: How shall we, living beside the Hudson River, meet the looming threats of climate change, rising sea level, aging infrastructure, changes to global shipping patterns, threats to food security, upheavals in energy production and distribution, and the risks all these disruptions could bring? As in the 19th and 20th centuries, the answer to those questions, and the solutions to our problems lie only as far away as the lapping waters of our home river.

    NOAA Sea Level Rise Rondout Creek

    This proposal, Rondout Riverport 2040; A Comprehensive Waterfront Plan for a Working Waterfront and Transportation of Goods and People, offers a pragmatic look forward to what — with proper preparation, cooperation and investment — could result in a revitalized and highly profitable Rondout Riverport at mid-century. This plan provides a practical salient vision of resilient shorelines and a working waterfront, redesigned to protect our community from sea level rise and storm surges, built to accommodate a wide spectrum of business, cultural and social uses that will benefit our communities and the Hudson Valley Bioregion. This, to put it simply, is a waterfront proposal that “floats all boats,” promising equity and prosperity for our citizens, large and small industries, investors, entrepreneurs, craftspeople, environmentalists, boatmen and women, dreamers and doers.

    But here is a warning: An optimistic future depends on our will to make it so. If we pursue politics and policy as usual, we could face a grim tomorrow as our region is hobbled by climate change: Abandoned, flooded, moldering shoreside buildings and piers; low-lying and failing sewage treatment plants and electric utilities; eco-refugees crowding our upstate communities seeking limited food and shelter; and a polluted, dead estuary as oil and chemical plants are inundated. Despite sincere efforts at incremental change and adaptation planning, without visionary action right now, our region could face a dire tomorrow marked by rising water and plummeting economic fortunes. The choice remains ours.

    The reality of escalating climate change makes clear that we must redesign our economies if we are to maintain quality of life in a carbon constrained future. A major opportunity offers itself: to take advantage of our wealth in waterways and return to our bioregion’s nautical roots and pioneer a new industry grounded in tried and true technology that once drove our economy: low/no carbon shipping and post carbon transportation businesses and organizations.

    In the New York City metro area today, 80% of freight transport is carried by truck, a mode of transportation that is congesting our highways, increasing air pollution, and entirely dependent on fossil fuels. In a carbon constrained future, sustainable water transport (an innovative mix of sailing vessels, hybrid/fossil fuel free electric ships, and people/electric powered transport) will almost certainly be a necessity. As the climate crisis deepens, water-based transportation routes can link communities and promote resilience throughout the Hudson Valley — doing so without congestion, without pollution, while being energy efficient, non-dependent on increasingly expensive fossil fuels, and very profitable. 

    Water-based transportation — once ubiquitous on the Hudson — is just about the only form of transportation, other than the bicycle, that requires little or no roadway maintenance. Navigation channels are less costly than roads to keep up; they do not require a large industrial base, and are far less energy-intensive than alternatives.

    And you needn’t look far for proof: The 363-mile-long Erie Canal system, linking the Atlantic Ocean with the Great Lakes, has been continuously operational since 1825. The cost of keeping it running is tiny compared to that of equivalent highway mileage. The Hudson and its linked waterways comprise the greatest set of transportation assets in the world — assets greatly underutilized today. Those water blue highways will see their status grow in a post carbon world, and communities along them will prosper as a result. Kingson and Esopus are two such communities. The Rondout Riverport is strategically located to be part of this great renaissance: located just ninety miles from one of the greatest ice-free harbors on earth; and sixty miles from the entrance to the Erie Canal. 

    But to make this opportunity a reality, Riverport infrastructure must be created to increase capacity, while being nimble enough to respond to rising sea and river levels and worsening storm surges, as well as shifting economic tides. The port will also need to be made accessible to smaller, more numerous vessels on a protected and restored working waterfront. To thrive as a maritime and commercial center in a carbon constrained era, Rondout Riverport’s infrastructure must include:

    • Charging stations for electric and electric hybrid vessels, flood-proof storage and production facilities for biofuels like methane (produced by sewage treatment plants), biodiesel (from restaurants’ used fryer fat), and hydrogen (created from seawater while sailing vessels are underway);
    • A flood proofed waterfront and flood proofed warehouses and trading houses;[1]
    • Local ship and boat building and repair facilities to support our local commercial fleet;
    • More traditional break bulk cranes for transfer of palletized, and bagged cargo;
    • Across-docking facilities for transfer of goods from ship-to-ship and from ship to first and-last-mile providers (i.e. small sailing, rowing, hybrid vessels as well as people/electric powered commercial trikes and wagons);
    • Access to innovative training facilities to provide a labor force: the new traders, river rovers, seafarers and port workers. This labor force will need training based on models for “preserving the tools and skills of the past to serve the future.”
    Pre-carbon Working Waterfront

    Rondout Riverport will not stand alone, but will be integrated into the greater Hudson Valley Bioregion, along with the wider Northeast and U.S. transportation and distribution system, with which it will engage collectively and creatively to unleash an extraordinary, historic transition to a future beyond fossil fuels; a future that is vibrant, abundant, resilient, and ultimately preferable, more equitable, and more economically viable than the current model.

    Rondout Riverport 2040 will serve as an empowering example to our bioregion and our country — demonstrating the viability of ethical livelihoods and teaching beneficial sustainable technologies that do minimal socio-environmental harm; methodologies that foster self-reliance and promote Slow Tech hands-on work practices.

    The result: entrepreneurs, professionals, technicians, craftspeople, academics and students from across our bioregion, and across the United States, will be drawn to our state-of-the-art waterfront — gathering here to learn from each other. Our waterfront will be like no other in our region, or maybe in the nation: Becoming a living laboratory, cultivating not only practical and sustainable energy, commerce and transportation solutions, but generating a flow of fresh, pathfinding ideas. 

    To bring these advanced infrastructure changes about — working with partners throughout the region — we will need to establish:

    Street of Ships
    • A new binding agreement with the region’s farmers and farm advocacy organizations in our “foodshed” that offers subsidized support of infrastructure including, but not limited to:
      • Full employment in year-round growing season zero carbon greenhouses;
      • First and last mile transportation of agricultural products to processors and the waterfront (using existing and new rail-trails as bike/trike corridors);
      • Solar powered cold storage at critical locations;
      • Year-round indoor farm markets.
    • An inter-port agreement with small and mid-sized ports along the Hudson River, the Erie, and Champlain Canals, and New York Harbor:
      • This agreement would include the sharing of information on resilience and “future proofing” of all waterfronts;
      • Establish a Sustainable Working Waterfront Toolkit — making available the historical and current uses and economics of New York’s waterfronts as a resource. The toolkit must include legal, policy, and financing tools that river ports and waterfront communities can tap into to preserve and enhance local and regional port facilities.
    • Small ship access to flood proofed regional produce and fish markets:
      • The Hunts Point Market and Fish Market must be made accessible to small ships, delivering farm goods from upstate and returning with seafood from the Market;
    • A new agreement with transport unions that allows ships to load and unload with their own equipment. Local industry will need to work in close conjunction with the unions to hire and train more people for post carbon longshore work;
    • A partnership with the region’s Maritime Academies, the Hudson River Maritime Museum’s Wooden Boat School, and the Harbor School to train mariners, and to teach the logistics careers required to serve the new post carbon working waterfront; with the ultimate goal being the creation of an education center in the mid-Hudson Valley where professional practitioners and apprentices can participate in practical workshops to relearn maritime and other heritage skills and old-new technology to serve present and future needs; 
    • An endowment for the preservation and utilization of traditional maritime skills and tools, the establishment of a traditional knowledge database/Wiki; library; and pre/post carbon tool, technology and machinery collection. This innovative interactive educational resource serves to preserve, restore, and promote the re-use of traditional skills, integrating those skills and methods with modern know-how and appropriate post carbon technologies;
    • Create maritime mixed-use zones where public parks, walkways and bikeways are built in flood zones and are adjacent to and part of the working waterfront — acting as a source of recreation and as a vital part of flood control;
    • Establish a strong working relationship with NOAA’s National Sea Grant Program for working waterfronts;
    • Advocate for a reduced, less intrusive regulatory role for the US Army Corps of Engineers. Instead, encourage Corps funding be channeled into partnerships with other agencies, local non-profit organizations, and an engaged public in order to develop, and redevelop climate change-resistant and resilient Hudson River Ports, and to create living shorelines, restored wetlands, and estuarine habitats.

    Through this diversity and synergy of uses, Rondout Riverport’s working waterfront will also:

    • Create jobs in sailing, logistics, shipbuilding, harbor maintenance, craft, food production and more;
    • Revitalize the waterfront community via economic development combined with better public access and recreation;
    • Improve regional food production and distribution, linking producers to markets in the Hudson Valley and beyond.
    • Design and build a maritime commerce micro-hub for, aggregation, warehousing, co- packing, and marketing. 

    Rondout Riverport will be the homeport for future-proof sailing, alternative fuel, and solar electric ships. It will provide training in maritime skills, shipbuilding, and longshore trades, while also educating crews in “earth care, people care, and fair share” principles. These future-proof ships and their locally trained crews will carry people, goods, and knowledge to and from towns along the Hudson and on the canals. 

    As Rondout Riverport becomes the working waterfront of tomorrow, the constraints and advantages of smaller and (s)lower tech modes of transport must be considered in every aspect of the port’s design.  Historic and modern technologies must meld seamlessly to offer approaches that are more self-sufficient and sustainable. Just one example: ships of all sorts, meeting a variety of needs, will have to be built (and rebuilt) locally, from locally sourced or recycled materials, and be crewed by locally trained seafarers, in order to adjust to declines in these resources globally, declines brought on by a combined climate and economic crisis and social upheaval abroad. These new vessels will likely be different than the ones we build today; smaller, more versatile, adaptable, energy-smart, and affordable.

    As fossil fuels become more expensive or less available, replaced by alternative sources, and are restricted by climate change policy — port infrastructure will need to be part of a carbon neutral trading network for “short sea shipping” that links us to the region and the world, serving the Hudson Valley, the New York/New Jersey Harbor, Coastal waterways, and transfer points for goods from overseas. 

    Moreover, the Roundout Riverport will be well positioned to become a laboratory for maritime innovation, as public agencies and private companies accelerate their investigations of the potential economic and environmental benefits of transferring more cargo from roadways to blueways.

    Imagine the Future, Realize the Vision

    Life at the water’s edge is rapidly changing. The impacts of new technology, patterns of urban development, and globalization are redefining global logistics, and while some waterfront cities will thrive as ports and grow under these new conditions, others will need to evolve in order to survive and succeed…. 

    The Rondout Creek today, lapping at the shores of Kingston, and of the Sleightsburg and Connelly hamlets in the town of Esopus, is in the flux of significant change. The waterfront as it is, represents an amalgam of positives and negatives. At its best, it boasts commercial shipyards, marinas, marine services businesses; institutions including the Hudson River Maritime Museum (and its Wooden Boat School and Shipyard); along with wetlands, open space, promenades, magnificent scenery and recreational possibilities. But at its worst, it is marred by brownfields, combined sewer overflows, and a variety of non-waterfront dependent uses that make poor use of water accessibility, marine transportation and port possibilities.

    Most unfortunate of all: existing development plans lack a sweeping vision and often fail to take a future into account dominated by climate impacts, including severe storm surges, along with a steady sea and river level rise that will soon inundate portions of the currently existing Roundout and Hudson shoreline. Plans that fail to take climate change into account will drown in insolvency.

    Over the past few years, a variety of plans and proposals have been put forward, each with very good elements, but also with gaps and flaws:

    However, importantly, very few if any of these proposals are in the implementation phase. And little of the available climate and sea level change studies and data are included in the port plans as presently formulated.

    Rondout Riverport 2040 is unique in that it takes likely forecasts of the near future fully into account; it is a proposal that offers a hard, sober look at the realities of our climate change, alternative energy, and global supply chain future.   

    But for this plan to be realized, stakeholders, partners, and existing maritime institutions will need to buy-in now and participate actively in the planning and implementation process. Those institutions include, but are not limited to the Center for Post Carbon Logistics, the Schooner Apollonia, the Hudson River Maritime Museum’s solar electric passenger vessel Solaris, the Hudson River Sloop Clearwater, Sustainable Hudson Valley’s Regional Hudson Valley Climate Action Plan,  The Riverport Coalition, and the Beacon Sloop Club’s Woody Guthrie. This diverse partnership must also be inclusive of public and private landowners, as well as land conservation organizations, including but not limited to the Kingston Land Trust, Scenic Hudson, and the hundreds of Hudson Valley organizations and individuals working for a more resilient and sustainable future.

    Threat Assessment:

    A first step: the Rondout communities must start by objectively assessing near future threats and evaluating our greatest points of weakness — assessing local infrastructure, and economic, political, social, and environmental structures. Rondout Riverport communities will especially need to fortify against the economic and environmental storms to come by doing work to enrich our towns and neighborhoods today, reducing risk and enhancing resilience for the future, by:

    Threat Assessment
    • Implementing community flood-proofing and simultaneously introducing drought-resistant landscaping, in preparation for extreme weather patterns;
    • institutionalizing green building practices;
    • zoning against development in climate disaster-prone floodplains;
    • installing redundant communication and storm-proof energy systems;
    • establishing systems for community-wide food security
    • creating “resiliency hubs”, equipped to deal with sudden health, environmental, or weather / climate disasters, and develop strategies for proactive risk minimization and management;
    • using the tools of community “placemaking” to include the broadest possible participation in planning for, and developing, a working and recreational Rondout Waterfront and Port that will be operational and adaptable for the first half of the 21st century and beyond.
    • develop an education and training center for rapid proliferation of all these practices and trades in and beyond the Rondout Riverport

    Placemaking — a pathway to the future:

    Rondout Riverport 2040 will engender the Hudson Valley’s can-do spirit, harness our region’s inventiveness and our love of innovation, allowing our region and its people to not merely survive in the Post Carbon era, but thrive. And why not? After all, our region gave the world the steamboat, the telegraph, the submarine, FM radio, the first interactive software systems vital to today’s computers, and even potato chips. We seem born to invent the future!

    Roundout Riverport 2040, by cooperating fully with all partners, will incorporate the best elements of existing planning documents; undertake a thorough land use, flood plain, and sea level rise analysis; examine current trends in shipping, energy, food security and port management; assess the best climate change and economic forecasts; and create an adaptive re-use Waterfront plan that incorporates the best of 19th, 20th, and 21st century technologies. 

    But this process will do far more than construct a vision. It must ensure that this vision is aligned with community values and sensibilities. To achieve this goal, we will use a placemaking approach as the structure for addressing critical questions about how best to mobilize the many assets of the Rondout Riverport in a coordinated fashion to meet community needs and attract diverse resources.  

    Placemaking is a holistic approach for considering the possibilities inherent in a locality by identifying a unifying purpose or theme — the essence of the place — and then identifying multiple strategies, at multiple scales, that relate to this theme, providing direction for achieving unified objectives and goals.

    The foundation of placemaking is a focus on the many natural benefits of public space – in order to achieve the most comprehensive multiple uses, aesthetic benefits, connectivity, and social interaction. This process will generate key insights into how state, municipal, and county government agencies can best coordinate implementation efforts and find the resources to address problems and opportunities.

    The placemaking approach will catalyze the integration of the many layers of conceptual planning already underway by various entities, aiding in the development of collaborative strategies for redeveloping the Port so that it serves multiple river uses and users.

    The partners will work with, and gain consensus from, other Hudson Valley organizations to begin realizing the Rondout Riverport 2040 vision. A network of groups, including the Boatbuilders, Sustainable Hudson Valley Senior Fellows, Good Work Institute Fellows Network, C4PCL’s advisory board, plus staff and contractors, will provide intensive inputs and garner resources to translate the partners’ vision into robust planning during the rest of 2020 and 2021.

    It is now past time to implement the many excellent ideas generated by our communities and their planners. It is time to bring the planning process forward into those communities. The path to a bright, sustainable future starts with research and engagement, and placemaking in Kingston and Espopus and on the Roundout Waterfront.

    Regenerative Port

    The source of our inspiration and empowerment will be our region’s shorefront and its waters, its hands, and minds. Here the best and brightest, urban and rural, “Slow” technologists, craftspeople, educators, planners, artists, schoolchildren, and seniors, can come together to remake our post-modern world. Here we’ll find new, efficient, green ways to produce energy; revolutionize agriculture to assure food security; reinvent transportation on land and water to move goods up and down our Hudson and to prosper in the challenging times ahead. Here we’ll help birth a new, inclusive regional economy that rewards all citizens, while celebrating democracy, cooperation, and public service.

    Picture a Roundout Port in which every day, diverse participants — Transition and Permaculture practitioners, boat and ship builders, coopers, riggers, longshore workers, managers, carpenters, commercial fishermen, millwrights, engineers, potters, community development financial institutions, weavers, woodworkers, planners, architects, writers, historians, archivists, computer and IT experts, and people from wildly diverse vocations — will all merge and meld their talents to realize the vision of Rondout Riverport 2040.

    In implementing the Rondout Riverport vision, we’ll move via hands-on experiences beyond spin and abstract buzzwords ­– past “environmental”, or “sustainable”, or “eco” this or that. Here, our work will focus on a single place and on a Just Transition away from fossil fuels. The times ahead will give new meaning to the word deckhand, as all join together to create the naturally viable means for living and being in community in the 21st Century — as we prosper economically, emotionally, and spiritually, beyond the realm of coal and oil. 

    The next step will be one of the most critical: to gather all our research and data, analyze it, and commit to honestly confronting challenges, while also boldly embracing opportunities and possibilities. We must move forward quickly and vigorously — climate change and economic change are moving ahead swiftly. We must inspire individuals, communities, local leaders, and City, County, and State officials to commit to the creation of a thriving, innovative Rondout Riverport and Working Waterfront, as a gateway to a vast system of sustainable blue waterways that together will enable a Post Carbon Future full of hope and opportunity.


    [1] A trading house an exporter, importer and also a trader that purchases and sells products for other businesses. Trading houses provide a service for businesses that want international trade experts to receive or deliver goods or services.

  • How Our Maritime Past Can Serve a Carbon-Constrained Future

    This post originally appeared on the Hudson River Maritime Museum’s Riverwise website on June 25, 2020

    The Hudson, the River that flows both ways has been a transportation corridor for hundreds of years before Europeans first saw it.  The Hudson rises in the mountains at Lake Tear of the Clouds in Essex County, NY and empties into Upper New York Bay.  The Hudson is a drowned river as its bottom is below sea level almost all the way to Albany.  The Hudson is also considered a fjord one of very few in North America.  The River has been a commerce highway for as long as humans have inhabited the North American continent.  Henry Hudson and other early European explorers were convinced that the River was part of the Northwest Passage.  

    Lake Tear of the Clouds, headwaters of the Hudson River, c. 1888. Photograph by Seneca Ray Stoddard. Library of Congress

    The Hudson River once formed a bustling highway linking even the smallest communities to a web of regularly scheduled commercial routes. Schooners, sloops, barges, and steamboats provided a unique way of life for early river town inhabitants. Farmers, merchants, and oystermen relied on this vibrant and diverse fleet of vessels to bring in supplies and deliver their goods to market. This arm-of-the-sea was an integral part of the lives of those who worked New York’s inland waters.

    “The Hudson at Tappan Zee,” Francis Silva, 1876, Brooklyn Museum of Art. This painting is actually not at Tappan Zee, but more likely near the Esopus Meadows and depicts the 1830s Esopus Meadows Lighthouse in the background.

    The Hudson is connected through New York Harbor to the Coast and the rest of the world.  With one of the world’s greatest ice-free harbors on earth, New York City was built on a shipping industry that has over time become a dangerously tenuous lifeline to the outside world for the region. Today the far-flung international trade network that once pumped vibrant economic life into the region threatens to collapse as imported natural resources and the fossil fuels needed to transport them become increasingly scarce and expensive. Higher petroleum costs, and higher wages in countries in which much of our imported goods are made could snap that lifeline. 

    Aerial view illustration of the tip of Manhattan in New York City, featuring Castle Garden in Battery Park and docks on the rivers. Brooklyn Bridge under construction is shown in exaggerated scale, circa 1880. Library of Congress.

    New York State’s working waterfronts have long been a key contributor to the region’s financial well-being and our nation’s economy. But, in a carbon constrained future, how will goods and people be moved from place to place, and what role will the Hudson River play in this vision? 

    ​How should we meet the looming challenges of climate change, rising sea level, aging infrastructure, changes to global shipping patterns, threats to food security, and the risks these changes bring to New York’s Hudson Valley.

    Photo by Joachim Kohler Bremen.

    ​The biggest question of all: How do we address this daunting multitude of challenges and turn them into opportunities for transforming waterfronts and ports to effectively and efficiently serve our regional economy far into the future?

    ​The solution in this time of rapid change may be a return to the “Slow Technology” of our recent past — sail powered freight ships – and to the present, solar powered ferries and barges.  Tomorrow, New York City’s port and the ports of the Hudson Valley will likely continue to be a commercial hubs due to their strategic location, but those harbors will likely resemble their 18th and 19th century selves rather than the ports we know today. 

    Solaris, Apollonia, and Clearwater rafted together at Albany, NY.

    We hope the “RiverWise: North Hudson Voyage” has served to engage the public and commercial interests along the Hudson in how ​these two important examples of 19th and 21st Century technology will create opportunities for communities to re-examine how their waterfronts will be used for recreation, conservation, and commerce.  This voyage of discovery is the first of many with more and more ships joining this flotilla of hope and inspiration.  
    ​The next step will be even more critical, to commit to honestly confronting challenges, while also boldly embracing opportunities and possibilities. We must move forward quickly and vigorously, and we need to do more. We must inspire individuals, communities, local leaders, city and state governments to commit to creating a thriving, post carbon transportation and logistics system. We must also commit to the creation of a network of sustainable blue waterways in a region that advocates for a post carbon transition that people will embrace as a collective adventure, as a common journey, as something positive, and above all, as a future full of Hope. 

    Solaris and Apollonia passing Kingston Point. Photo by Carla Lesh.
  • Comments by the Center for Post Carbon Logistics on the NYC Comprehensive Waterfront Plan: Working Waterfront and Transportation of Goods.

    The New York Port in 2050

    “Moving goods and people from place to place in a carbon constrained future will be dependent on sailing vessels, hybrid/fossil free electric ships, and people/electric, powered transport for first and last mile logistics. “

    New York’s Working Waterfront has long been a key contributor to the region’s financial wellbeing and our nation’s economy. But, in a carbon constrained future, how will goods and people be moved from place to place, and what role will The City’s Waterfront play in this vision? How should we meet the looming challenges of climate change, rising sea level, aging infrastructure, changes to global shipping patterns, threats to food security, and the risks these changes bring to New York’s financial sector?

    The biggest question of all: How do we address this daunting multitude of challenges and turn them into opportunities for transforming the waterfront and Port in order to effectively and efficiently serve our regional and national economy far into the future?

    “Life at the water’s edge is rapidly changing. The impacts of new technology, patterns of urban development, and globalization are redefining global logistics, and while some waterfront cities will thrive as ports and grow under these new conditions, others will need to evolve in order to survive and succeed…. How will New York re-invent its waterfront?”

    If present trends continue, New York Harbor will need to be transformed into a hub of the spokes for “short sea shipping” (any movement of freight by water that doesn’t cross oceans such as freight ferries, short-haul barges and various other marine vessels). rather than serving as an unsustainable container cargo port. The good news: the New York metro region has an extensive network of waterways, and so is very well suited for the short sea shipping mode of freight transport. Moreover, public agencies and private companies are investigating the potential economic and environmental benefits of transferring more cargo from road to sea.

    As New York moves forward to the working waterfront of tomorrow, the constraints, and in some cases the advantages, of smaller and (s)lower tech modes of transport must be considered; allowing for the integration of slow tech transport into harbor infrastructure to support these imminent changes.

    If the New York port is to thrive, 19th, 20th, and 21st Century technology must meld seamlessly into new, mid-century methods of transport, also with an emphasis on what might seem like bygone, but productive, methodologies in order to become more self-sufficient and sustainable.

    To offer just one example, ships of all sorts will need to be built (and rebuilt) locally, from locally sourced or recycled materials, and be crewed by locally trained seafarers, in order to adjust to declines in these resources globally, declines brought on by the climate crisis and social upheaval abroad.  These new vessels will likely be very different than the ones built today

    As fossil fuels become more expensive and are restricted by climate change policy, port infrastructure will need to be part of a carbon neutral trading network that links us to the region and the world. The good news: our port is well positioned to become a laboratory for maritime innovation, offering competitive freight rates on 18th and 19th Century shipping routes enhanced by 21st Century technology.

    A Port Facing the Greatest Challenges in Its History

    Our world is now convulsed by converging crises of a magnitude never seen by humanity: climate change and sea level rise, global economic instability, and peak everything. Add to these threats the risk of wars over natural resources, climate migration, failure of aging and over stressed infrastructure, unstable economies, and the erosion of community values. Each of these crises presents particularly thorny problems for New York City, its Port, and the region. Challenges which also offer opportunities.

    New York City owes its very existence to its location on one of the greatest ice-free harbors on earth; in turn, that great urban powerhouse was built on its Harbor and shipping industry. But as new threats loom, our aging Port has devolved into a dangerously tenuous lifeline to the world overseas.

    Mid-west drought

    Today, the far-flung international trade network that once pumped vibrant economic life into New York City and our region is threatened with collapse as imported natural resources grow more expensive, carbon pollution from shipping grows much worse, and the fossil fuels needed to transport goods become increasingly scarce and costly. Spiralling petroleum costs, and turmoil in nations upon which we rely for imported goods could snap our international lifeline at any time. 

    The present system is unsustainable, so we must prepare to transform it, and we must move quickly

    It’s important to understand that all of the many crises we face are intimately linked to each other, and magnify each other, impacting our port’s future. Just a few troubling examples:

    • A severe long-term drought in the American Midwest, could cut off our region’s supply of wheat, corn and soy, causing food shortages and a financial calamity.
    • Peak oil requires that we drill for fossil fuels in increasingly extreme landscapes, like the deep-water Gulf of Mexico, prone to more and more powerful hurricanes, or by using hydraulic fracturing that will likely contaminate groundwater in the heart of our regional foodshed, and the grain belt. Sudden price surges would impact shipping and our Port.
    • Our sprawling global oil pipeline stretches around the globe, making us vulnerable and dependent on volatile states prone to war, revolution, and migratory upheaval. Again, such conflicts could seriously impact global commerce and our Port.
    • An economic crash or a financially-sapping resource war abroad, could wreck our balance of trade and shatter our tax base, then making it fiscally impossible to adapt our infrastructure to accommodate climate change impacts, which would lead to more unpreparedness and economic hardship.
    • Meanwhile, poor harbor planning, and inappropriate non-water-dependent development along New York City’s flood prone waterfront could seriously hamper adaptation to these many crises. 

    The accumulation and interaction of such shocks could be catastrophic if we do not prepare

    Despite its present dominance, the New York Port and its current maritime logistics system remains fragile. It is reliant upon carbon-based fuels, driving internal combustion engines. This local fossil fuel-dependent system is interwoven into long-distance, globalized trade and is designed for Just-In-Time delivery. Importantly, it also depends upon a financial accounting system that avoids paying for negative environmental and social externalities such as global warming, environmental pollution, and sea level rise. But the bill for these negative externalities is coming due now and will be paid by our Port, our city, and our regional economy for decades to come if we don’t prepare to prevent that from happening.

    Here is a stark reality that we must deal with if we are to thrive as a 21st Century Port: The World Economic Forum determined in 2018 that if shipping were a country, it would be the world’s sixth-biggest greenhouse gas emitter. Those maritime emissions must be slashed, and soon. That being true, there are grave doubts that our current shipping system can easily adapt to the policy and technological shifts needed to successfully curb climate change. But failure to adapt will be catastrophic for our Port: sea level rise alone could make sure of that. So we have no choice: we must adapt.

    The NY/NJ Port, New York City’s working waterfront, and the greater region are at a crossroads, a turning point. Looking forward rationally at all the indicators, our “business as usual” carbon model, dependent on globe-trotting fossil fuel powered container ships is putting us on course for systemic failure, marked by cataclysmic energy shortages and infrastructure collapse, inundation from sea level rise, financial meltdown and its attendant social disarray.

    For those who think otherwise, our climate change future and its inevitable impacts were foreshadowed when Hurricane Sandy made landfall in New York City in October 2010, bringing with it a destructive wall of water that flooded subway tunnels and neighborhoods, cut off power to lower Manhattan, washed away century-old structures, cost the city millions, and left it forever changed. Sandy “was a turning point, that’s true not just for anticipating future Sandy-like storms, but also for predicting overall sea-level rise and such climate-change impacts as more frequent heat waves, which the New York City Panel on Climate Change projects will triple by the 2050s.”

    Despite widespread agreement upon these future climate change-driven inevitabilities, the Port Authority — because it has invested so heavily in large container port infrastructure — continues to write “resiliency” reports, even as large container ships becomes increasingly obsolete — outdated dinosaurs  at the end of a fossil fuel era.

    It is also expected that Port Authority will continue to pour millions of dollars into incremental “port improvements,” while failing to address the inexorable rise of the sea and the eventual destruction of most of its expensive industrial port infrastructure. Likewise, the Corps of Engineers, despite some attempts at “greenwashing” remains in denial, as are the City of New York, and the States of New York and New Jersey. Bold initiatives proposed after Hurricane Sandy collect dust on agency bookshelves.  Attempts at “pilot” projects related to climate change protection and adaptation have so far been way too feeble, too small and too late.

    Meeting Challenges of a 21st Century Port

    If the Port (and the City and Region it serves) survives into the second half of this century it will be significantly smaller, more sustainable, and resilient with an emphasis on adaptation, and realistic outcomes for the continuation of the transport of goods and people.

    The contemporary Port of NY/NJ is the largest port on the East Coast and the third largest in the US. For the freight offloaded at its facilities, our Port is just one stop in an extensive intermodal distribution chain.

    But here’s another important fact: we drastically underutilize an invaluable regional transportation resource: our local waterways. In New York City’s metro region, 80% of freight transport today is carried by truck, a practice that congests our highways, increases air pollution, and is entirely dependent on fossil fuels. In the context of a working waterfront of the second third of the 21st century, (electric) trucks and rail may continue to have relevance in city-to-city transport, but all large trucks will likely have necessarily disappeared from the urban core.  Congestion, pollution, and quality of life issues make this inevitable. And Just in Time delivery will be replaced by Warehouse in Transit Logistics (WIT or Warehouse –in- transit” is the successor to JIT or just-in-time which is now selectively outdated. Many cargoes that speed along highways to spend days in a warehouse could as easily and more economically / beneficially move by water).

    In the 18th, and 19th and early 20th centuries, the Hudson River, the New York Harbor, and the NY/NJ Harbor Estuary and its river tributaries served as a bustling network of marine highways linking even the smallest communities to a web of regularly scheduled commercial routes. Boats of all sizes met local cargo and passenger needs: schooners, sloops, barges, and steamboats connected river town inhabitants. Farmers, merchants, and oystermen relied on this vibrant and diverse fleet of vessels to bring in supplies and deliver goods to market. The NY/NJ Harbor Estuary and its tributaries — and the ships and boats sailing them — were vital and integral to those who worked and lived along our inland waters.

    Historically, thousands of vessels plied these marine highways, sailing to and from The City’s Harbor to the farming communities of New Jersey and the Hudson Valley, delivering fresh local farm produce, fish, shellfish, and passengers to ports along the way.

    Today, those marine  highways still exist, but thanks to the boom in highway construction in the mid-20th Century, have fallen into deep neglect. They now need to be reinvigorated. Injecting new life into these regional maritime trade routes is far more than just a celebration of tradition. In a carbon constrained future, sustainable water transport will be a necessity.  As the climate crisis deepens, water-based low-or-no carbon transportation routes could link communities throughout the region.

    The rivers, bays, canals, and coasts of the Hudson Valley, NY Harbor, and Mid-Atlantic region continue to be a marine highway today, but one that is limited to deeply dredged channels leading to container ports and fossil fuel and chemical tank farms.

    In a carbon constrained future, we will need to return to our region’s nautical roots and advocate for the maritime, and for the “first and last mile technology” necessary for moving goods and people from place to place minimizing carbon pollution, opting for existing and emerging low carbon shipping and post carbon transportation businesses and organizations.

    Question: How can we rapidly develop a new approach to waterway transportation logistics that is attentive to, and resilient to the climate emergency? And under fast-evolving environmental and social conditions, how can we alter our Port to sustain a vibrant economy and standard of living for ourselves and future generations — one that is also equitable and inclusive?

    Vision for a Working Waterfront and NY Port in the Second Third of the 21st Century

    Oddly enough, a vision for an efficient, economically vibrant, post carbon working waterfront in the 2030s, ‘40s and ‘50s will likely resemble the New York Harbor of the late 19th century, rather than what we see today. The Harbor of the near future will need to link not only to roadways and railways, but to our region’s marine highways, which will carry massive amounts of cargo and people.

    Shoreline infrastructure will have to scale down and increase in capacity, and be nimble in its response to rising sea levels and more violent storms. It will have to be accessible to smaller, more numerous vessels on a preserved and restored Working Waterfront that is socially and culturally integral to the communities and our ‘sense of place” and include:

    • Charging stations for electric and electric hybrid vessels, flood-proof storage and production facilities for biofuels like methane (from sewage treatment plants), biodiesel (from used fryer fat), and hydrogen (created from seawater while sailing vessels are underway).
    • Waterfront and flood proofed warehouses and trading houses, business that specializes in facilitating  transactions between a home country and foreign countries. (A trading house is an exporter, importer and also a trader that purchases and sells products for other businesses. Trading houses provide a service for businesses that want international trade experts to receive or deliver goods or services).
    • Local ship and boat building and repair facilities to support a local fleet,
    • More accessible customs clearance areas,
    • More traditional break bulk cranes for bulk, palletized, and bagged cargo,
    • Cross-docking facilities for transfer of goods from larger ocean-going ships to smaller short sea shipping vessels, and for transfer to first and last mile providers, i.e. small sailing, rowing, hybrid vessels as well as people/electric powered small commercial trikes and wagons.
    • Access for docking of “historic” ships to enable the “new” traders and seafarer models for “preserving the tools and skills of the past to serve the future.”

    To bring these infrastructure changes about, we will need to immediately establish:

    • A new binding agreement with the region’s farmers and farm advocacy organizations in our “foodshed,”(that includes a food security plan for the New York City Bioregion). This agreement could be modeled on New York City’s agreement with farmers in the drinking water Watershed.
    • An inter-port agreements with small and mid-sized ports within a 100 mile radius of the Harbor.
    • Small ship access to flood proofed regional produce and fish markets.
    • A new agreement with transport unions to allow ships to load and unload with their own equipment. Working with the Unions to hire and train more people for post carbon longshore work.
    • A partnership with the region’s Maritime Academies and the Harbor School to retrain mariners and for logistics careers for the new post carbon working waterfront; creating a maritime education center where professional practitioners and apprentices can participate in practical workshops to relearn maritime and Port skills of the past to serve the future.
    • An endowment for a new “sailor’s snug harbor for the “aged, decrepit and worn-out sailors”
    • An endowment for the preservation and utilization of traditional maritime skills and tools, and a traditional knowledge database, library, and pre/post carbon tool, technology, and machinery collection. This activity serves to preserve, restore and promote the re-use of traditional skills.
    • Establish a Sustainable Working Waterfront Toolkit—enumerating the historical and current uses and economics of New York’s waterfront. The toolkit must include legal, policy, and financing tools which river ports, blue highways and estuarine communities can use to preserve and enhance local and regional port facilities.
    • Create maritime mixed-use zones where public parks, walkways and bikeways are built in flood zones and are adjacent to and part of a working waterfront.
    • Establish a strong working relationship with NOAA’s National Sea Grant Program for working waterfronts.
    • Advocate for a reduced, less intrusive regulatory role for the US Army Corps of Engineers. Instead, encourage funding to the Corps for partnerships with other agencies, non-profit organizations, and an engaged public for developing, and redeveloping, a sustainable NY Port in a carbon constrained future, including but not limited to working with NY/NJ Baykeeper, the billion oyster project, and the Hudson River Foundation to build oyster reefs for habitat improvement and shoreline protection.

    The New Working Waterfront will also:

    • Create jobs in seafaring, logistics, ship building, harbor maintenance and more.
    • Revitalize waterfront communities by preserving the working waterfront and commercial enterprises, while providing more public access and recreation.
    • Improve regional food production and distribution, linking producers to buyers.

    Imagining our Working Waterfront, circa 2050

    Put simply, the shift from road, rail, and fossil fuel dependence, to dependence on our region’s extensive network of marine highways in a low-or-no carbon era, is a “breeze.”

    Water-based transportation is just about the only form of transportation other than the bicycle that requires little or no roadway maintenance. There are no surfaces to grade or pave, no tracks, no bridges or trestles to care for. Of course, canals need to be restored and preserved; navigation channels need to be marked with buoys; locks and lighthouses need to be manned and maintained. But unlike motorway or railroad maintenance, these activities don’t require a large industrial base, and are far less energy-intensive than alternatives.

    The 363-mile-long Erie Canal system, linking the Atlantic Ocean with the Great Lakes, for example, has been continuously operational and profitable since 1825. The cost of keeping it running is tiny compared to the cost of equivalent highway mileage and with winters expected to be more mild the canal may be open year round.

    The Hudson, Long Island Sound, the Bays of New York Harbor, and a significant number of natural and artificial waterways in the US and Canada comprise the greatest set of transportation assets in the world. Those marine highways will only see their status grow in a post carbon world — and the NY/NJ Harbor area is especially blessed with such waterways.

    Let’s imagine: It is a hot, humid, late autumn day in 2050. From a high floor in one of lower Manhattan’s surviving skyscrapers, a trading house ship spotter, sees the topmasts of a tall ship entering the Lower Bay. The watcher signals the pilot schooner on post off of what was once Sandy Hook, and waiting Tug Augustin Mouchot a solar powered tug are dispatched to tow the engineless sea-going square rigger to a berth in the new port in the recently completed Gowanus Bay and Erie Basin Harbor with its oyster encrusted seawall created by repurposing concrete and stone from  waterfront buildings and piers inundated by rising seas over the last 30 years. 

    Clipper Ship

    The ship, the Jorne Langelaan, named after the builder of the first of the post carbon Eco-Clippers, has its crew aloft putting a harbor furl on the hemp cloth sails. She carries a mixed cargo of Caribbean fair trade coffee and cocoa beans bound for the region’s roasters and chocolatiers as well as preserved tropical fruits and rum. The Langelaan is looking a little “worse for wear” having skirted the 5th named Atlantic storm of the season. But her New York trained crew of young men and women is in good spirits, looking forward to spending time ashore, and to a few drinks of brew, cider, and spirits locally made and delivered by sloop and schooner from around the region, and to a good meal at a cafe serving up dishes harvested from the Harbor’s new artisan fishery and from oyster beds in shallows created by submerged piers and streets.   

    A long shore crew, warehouse workers, drovers and their electric assist people-powered tricycles and wagons converge at the waterfront’s new storm-proofed floating dock — which rises and falls with surging tides. Cargo surveyors assist with the loading of schooners. Crews on solar electric canal barges and sloops make ready to transfer cargo from the Langelaan to their holds, and to carry that cargo to ports up and down the Hudson River, to the newly opened Delaware and Raritan, and Delaware and Hudson Canals, coastal New Jersey, Long Island, and New England. 

    The Pilot Schooner comes alongside the Langelaan and the pilot goes up the ladder to the helm to direct the square rigger to its destination. Customs agents sail from Staten Island to clear the cargo. 

    A huge tarred manila hemp hawser is passed to the ship from the tug and the last few miles to port pass under the clipper’s hull. The docking pilot skillfully moves the ship to the dock while the Clipper’s crew readies the ship’s gear, opening hatches, and starting up a steam winch that will do most of the lifting. There are also floating cargo cranes that can be used for cargo heavier or bulkier than can be handled by the ship’s gear. 

    This (s)low tech port makes the best use of tried and true 19th century technology, supported with 21st century solar and battery electric gear and vehicles. More people are at work on the waterfront than any time since the 1920s; there are more warehouses and trading houses, ship building, repair facilities, and docking facilities than at any time in New York’s nautical history.

    Just behind the waterfront are sail and rope makers utilizing New York hemp; forges and foundries using concentrated solar heat to form steel and bronze fittings. Riggers are hard at work in rope walks making running rigging and dock lines for the numerous sailing ships. Dry docks and shipyards look out on bikeways and walkways circumscribing the tidal flats from which hundreds of locals and tourists watch the port activity — safe in the knowledge that food and goods continue to come into the city, not “just in time,” but perhaps just enough. 

    This narrative offers a positive look forward at the New York Port at mid-century. But that optimistic future totally depends on the will to make it so. Should we pursue politics and policy as usual, we may face a grimmer New York waterfront in 2050: Abandoned, flooded, mouldering buildings and piers; failing, low-lying sewage treatment plants and electric utilities; climate change and rising sea-driven New York City migrants crowding upstate communities seeking food and shelter; a polluted, fish empty estuary as oil and chemical plants go underwater. Food and fuel become too expensive except for the very wealthy; Crime and violence escalating, as are protests and riots bordering on insurrection, hard for law enforcement to contain; The City becomes more and more ungovernable, and faces a dark future bounded by economic gloom and rising water. 

    The choice is ours. The path to a bright, sustainable future starts with this process of city-wide community engagement, and a research gathering effort that seeks input on a Working Waterfront. A good first step is being taken to better inform the waterfront planning process.

    NY Port 2040

    The next step will be even more critical: to take all of the information gathered, and to commit to honestly confronting challenges, while also boldly embracing opportunities and possibilities. We must move forward quickly and vigorously, and we need to do more than just convene. We must inspire individuals, communities, local leaders, city and state governments to commit to creating a thriving, post carbon Working Waterfront. We must also commit to the creation of a network of sustainable blue waterways in a region that advocates for a post carbon transition that people will embrace as a collective adventure, as a common journey, as something positive, and above all, as a future full of Hope. 


  • How to Run the Economy on the Weather

    Reprinted from Low Tech Magazine with Permission

    Before the Industrial Revolution, people adjusted their energy demand to a variable energy supply. Our global trade and transport system — which relied on sail boats — operated only when the wind blew, as did the mills that supplied our food and powered many manufacturing processes. 

    The same approach could be very useful today, especially when improved by modern technology. In particular, factories and cargo transportation — such as ships and even trains — could be operated only when renewable energy is available. Adjusting energy demand to supply would make switching to renewable energy much more realistic than it is today.

    Renewable Energy in Pre-Industrial Times

    Before the Industrial Revolution, both industry and transportation were largely dependent on intermittent renewable energy sources. Water mills, windmills and sailing boats have been in use since Antiquity, but the Europeans brought these technologies to full development from the 1400s onwards.

    At their peak, right before the Industrial Revolution took off, there were an estimated 200,000 wind powered mills and 500,000 water powered mills in Europe. Initially, water mills and windmills were mainly used for grinding grain, a laborious task that had been done by hand for many centuries, first with the aid of stones and later with a rotary hand mill.

    “Een zomers landschap” (“A summer landscape”), a painting by Jan van Os. 

    However, soon water and wind powered mills were adapted to industrial processes like sawing wood, polishing glass, making paper, boring pipes, cutting marble, slitting metal, sharpening knives, crushing chalk, grinding mortar, making gunpowder, minting coins, and so on. [1-3] Wind- and water mills also processed a host of agricultural products. They were pressing olives, hulling barley and rice, grinding spices and tobacco, and crushing linseed, rapeseed and hempseed for cooking and lighting.

    Even though it relied on intermittent wind sources, international trade was crucial to many European economies before the Industrial Revolution.

    So-called ‘industrial water mills’ had been used in Antiquity and were widely adopted in Europe by the fifteenth century, but ‘industrial windmills’ appeared only in the 1600s in the Netherlands, a country that took wind power to the extreme. The Dutch even applied wind power to reclaim land from the sea, and the whole country was kept dry by intermittently operating wind mills until 1850. [1-3]

    Abraham Storck: A river landscape with fishermen in rowing boats, 1679.

    The use of wind power for transportation – in the form of the sailboat – also boomed from the 1500s onwards, when Europeans ‘discovered’ new lands. Wind powered transportation supported a robust, diverse and ever expanding international trading system in both bulk goods (such as grain, wine, wood, metals, ceramics, and preserved fish), luxury items (such as precious metals, furs, spices, ivory, silks, and medicin) and human slaves. [4]

    Even though it relied on intermittent wind sources, international trade was crucial to many European economies. For example, the Dutch shipbuilding industry, which was centred around some 450 wind-powered saw mills, imported virtually all its naval stores from the Baltic: wood, tar, iron, hemp and flax. Even the food supply could depend on wind-powered transportation. Towards the end of the 1500s, the Dutch imported two thousand shiploads of grain per year from Gdansk. [4] Sailboats were also important for fishing.

    Dealing with Intermittency in Pre-Industrial Times

    Although variable renewable energy sources were critical to European society for some 500 years before fossil fuels took over, there were no chemical batteries, no electric transmission lines, and no balancing capacity of fossil fuel power plants to deal with the variable energy output of wind and water power. So, how did our ancestors deal with the large variability of renewable power sources?

    To some extent, they were counting on technological solutions to match energy supply to energy demand, just as we do today. The water level in a river depends on the weather and the seasons. Boat mills and bridge mills were among the earliest technological fixes to this problem. They went up and down with the water level, which allowed them to maintain a more predictable operating regime. [1-2]

    To some extent, our ancestors were counting on technological solutions to match energy supply to energy demand, just as we do today.

    However, water power could also be stored for later use. Starting in the middle ages, dams were built to create mill ponds, a form of energy storage that’s similar to today’s hydropower reservoirs. The storage reservoirs evened out the flow of streams and insured that water was available when it was needed. [2] [5] 

    The Horse Mill, a painting by James Herring. Ca. 1850.

    But rivers could still dry out or freeze over for prolonged periods, rendering dams and adjustable water wheels useless. Furthermore, when one counted on windmills, no such technological fixes were available. [3] [6-7]

    A technological solution to the intermittency of both water and wind power was the ‘beast mill’ or ‘horse mill’. [8] In contrast to wind and water power, horses, donkeys or oxen could be counted on to supply power whenever it was required. However, beast mills were expensive and energy inefficient to operate: feeding a horse required a land area capable of feeding eight humans. [9] Consequently, the use of animal power in large-scale manufacturing processes was rare. Beast mills were mostly used for the milling of grain or as a power source in small workshop settings, using draft animals. [1]

    Obviously, beast mills were not a viable backup power source for sailing ships either. In principle, sailing boats could revert to human power when wind was not available. However, a sufficiently large rowing crew needed extra water and food, which would have limited the range of the ship, or its cargo capacity. Therefore, rowing was mainly restricted to battleships and smaller boats.

    Adjusting Demand to Supply: Factories

    Because of their limited technological options for dealing with the variability of renewable energy sources, our ancestors mainly resorted to a strategy that we have largely forgotten about: they adapted their energy demand to the variable energy supply. In other words, they accepted that renewable energy was not always available and acted accordingly. For example, windmills and sailboats were simply not operated when there was no wind.

    Painting: Mills in the Westzijderveld near Zaandam, a painting by Claude Monet.

     In industrial windmills, work was done whenever the wind blew, even if that meant that the miller had to work night and day, taking only short naps. For example, a document reveals that at the Union Mill in Cranbrook, England, the miller once had only three hours sleep during a windy period lasting 60 hours. [3] A 1957 book about windmills, partly based on interviews with the last surviving millers, reveals the urgency of using wind when it was available: 

    Often enough when the wind blew in autumn, the miller would work from Sunday midnight to Tuesday evening, Wednesday morning to Thursday night, and Friday morning to Saturday midnight, taking only a few snatches of sleep; and a good windmiller always woke up in bed when the wind rose, getting up in the middle of the night to set the mill going, because the wind was his taskmaster and must be taken advantage of whenever it blew. Many a village has at times gone short of wheaten bread because the local mill was becalmed in a waterless district before the invention of the steam engine; and barley-meal bread or even potato bread had to suffice in the crisis of a windless autumn. [10]

    In earlier, more conservative times, the miller was punished for working on Sunday, but he didn’t always care. When a protest against Sunday work was made to Mr. Wade of Wicklewood towermill, Norfolk, he retorted: “If the Lord is good enough to send me wind on a Sunday, I’m going to use it”. [11] On the other hand, when there was no wind, millers did other work, like maintaining their machinery, or took time off. Noah Edwards, the last miller of Arkley tower mill, Hertfordshire, would “sit on the fan stage of a fine evening and play his fiddle”. [11]

    Adjusting Demand to Supply: Sailboats

    A similar approach existed for overseas travel, using sail boats. When there was no wind, sailors stayed ashore, maintained and repaired their ships, or did other things. They planned their trips according to the seasons, making use of favourable seasonal winds and currents. Winds at sea are not only much stronger than those over land, but also more predictable. 

    Sailors planned their trips according to the seasons, making use of favourable seasonal winds and currents. 

    The lower atmosphere of the planet is encircled by six major wind belts, three in each hemisphere. From Equator to poles these ‘prevailing winds’ are the trade winds, the westerlies, and the easterlies. The six wind belts move north in the northern summer and south in the northern winter. Five major sea current gyres are correlated with the dominant wind flows. 

    The Maas at Dordrecht, a painting by Aelbert Cuyp, 1660.

    Gradually, European sailors deciphered the global pattern of winds and currents and took full advantage of them to establish new sea routes all over the world. By the 1500s, Christopher Columbus had figured out that the combination of trade winds and westerlies enabled a round-trip route for sailing ships crossing the Atlantic Ocean.

    The trade winds reach their northernmost latitude at or after the end of the northern summer, bringing them in reach of Spain and Portugal. These summer trade winds made it easy to sail from Southern Europe to the Caribbean and South America, because the wind was blowing in that direction along the route.

    Wind map of the Atlantic, September 9, 2017. Source: Windy

    Taking the same route back would be nearly impossible. However, Iberian sailors first sailed north to catch the westerlies, which reach their southernmost location at or after the end of winter and carried the sailors straight back to Southern Europe. In the 1560s, Basque explorer Andrés de Urdaneta discovered a similar round-trip route in the Pacific Ocean. [12]

    The use of favourable winds made travel times of sailboats relatively reliable. The fastest Atlantic crossing was 21 days, the slowest 29 days.

    The use of favourable winds made the travel times of sailboats relatively predictable. Ocean Passages for the Worldmentions that typical passage times from New York to the English Channel for a mid-19th to early 20th century sailing vessel was 25 to 30 days. From 1818 to 1832, the fastest crossing was 21 days, the slowest 29 days. [13]

    The journey from the English Channel to New York took 35-40 days in winter and 40-50 days in summer. To Cape Town, Melbourne, and Calcutta took 50-60 days, 80-90 days, and 100-120 days, respectively. [13] These travel times are double to triple those of today’s container ships, which vary their speed based on oil prices and economic demand

    Old Approach, New Technology

    As a strategy to deal with variable energy sources, adjusting energy demand to renewable energy supply is just as valuable a solution today as it was in pre-industrial times. However, this does not mean that we need to go back to pre-industrial means. We have better technology available, which makes it much easier to synchronise the economic demands with the vagaries of the weather. 

    Shipping in a calm, a painting by Charles Brooking, first half 18th century.

    In the following paragraphs, I investigate in more detail how industry and transportation could be operated on variable energy sources alone, and demonstrate how new technologies open new possibilities. I then conclude by analysing the effects on consumers, workers, and economic growth.

    Industrial Manufacturing

    On a global scale, industrial manufacturing accounts for nearly half of all energy end use. Many mechanical processes that were run by windmills are still important today, such as sawing, cutting, boring, drilling, crushing, hammering, sharpening, polishing, milling, turning, and so on. All these production processes can be run with an intermittent power supply. 

    The same goes for food production processes (mincing, grinding or hulling grains, pressing olives and seeds), mining and excavation (picking and shovelling, rock and ore crushing), or textile production (fulling cloth, preparing fibres, knitting and weaving). In all these examples, intermittent energy input does not affect the quality of the production process, only the production speed.

    Many production processes are not strongly disadvantaged by an intermittent power supply.

    Running these processes on variable power sources has become a lot easier than it was in earlier times. For one thing, wind power plants are now completely automated, while the traditional windmill required constant attention. [14]

    Image: “Travailler au moulin / Werken met molens”, Jean Bruggeman, 1996.

    However, not only are wind turbines (and water turbines) more practical and powerful than in earlier times, we can now make use of solar energy to produce mechanical energy. This is usually done with solar photovoltaic (PV) panels, which convert sunlight into electricity to run an electric motor. 

    Consequently, a factory that requires mechanical energy can be run on a combination of wind and solar power, which increases the chances that there’s sufficient energy to run its machinery. The ability to harvest solar energy is important because it’s by far the most widely available renewable power source. Most of the potential capacity for water power is already taken. [15] 

    Thermal Energy

    Another crucial difference with pre-industrial times is that we can apply the same strategy to basic industrial processes that require thermal energy instead of mechanical energy. Heat dominates industrial energy use, for instance, in the making of chemicals or microchips, or in the smelting of metals.

    In pre-industrial times, manufacturing processes that required thermal energy were powered by the burning of biomass, peat and/or coal. The use of these energy sources caused grave problems, such as large-scale deforestation, loss of land, and air pollution. Although solar energy was used in earlier times, for instance, to evaporate salt along seashores, to dry crops for preservation, or to sunbake clay bricks, its use was limited to processes that required relatively low temperatures.

    We can apply the same strategy to basic industrial processes that require thermal energy instead of mechanical energy, which was not possible before the Industrial Revolution.

    Today, renewable energy other than biomass can be used to produce thermal energy in two ways. First, we can use wind turbines, water turbines or solar PV panels to produce electricity, which can then be used to produce heat by electrical resistance. This was not possible in pre-industrial times, because there was no electricity.

    Augustin Mouchot’s solar powered printing press, 1882. 

    Second, we can apply solar heat directly, using water-based flat plate collectors or evacuated tube collectors, which collect solar radiation from all directions and can reach temperatures of 120 degrees celsius. We also have solar concentrator collectors, which track the sun, concentrate its radiation, and can generate temperatures high enough to melt metals or produce microchips and solar cells. These solar technologies only became available in the late 19th century, following advances in the manufacturing of glass and mirrors.

    Limited Energy Storage

    Running factories on variable power sources doesn’t exclude the use of energy storage or a backup of dispatchable power plants. Adjusting demand to supply should take priority, but other strategies can play a supportive role. First, energy storage or backup power generation capacity could be useful for critical production processes that can’t be halted for prolonged periods, such as food production.

    Second, short-term energy storage is also useful to run production processes that are disadvantaged by an intermittent power supply. [16] Third, short-term energy storage is crucial for computer-controlled manufacturing processes, allowing these to continue operating during short interruptions in the power supply, and to shut down safely in case of longer power cuts. [17]

    Binnenshaven Rotterdam, a painting by Jongkind Johan Berthold (1857)

    Compared to pre-industrial times, we now have more and better energy storage options available. For example, we can use biomass as a backup power source for mechanical energy production, something pre-industrial millers could not do – before the arrival of the steam engine, there was no way of converting biomass into mechanical energy.

    Before the arrival of the steam engine, there was no way of converting biomass into mechanical energy.

    We also have chemical batteries, and we have low-tech systems like flywheels, compressed air storage, hydraulic accumulators, and pumped storage plants. Heat energy can be stored in well-insulated water reservoirs (up to 100 degrees) or in salt, oil or ceramics (for much higher temperatures). All these storage solutions would fail for some reason or another if they were tasked with storing a large share of renewable energy production. However, they can be very useful on a smaller scale in support of demand adjustment.

    The New Age of Sail

    Cargo transportation is another candidate for using renewable power when it’s available. This is most obvious for shipping. Ships still carry about 90 percent of the world’s trade, and although shipping is the most energy efficient way of transportation per tonne-kilometre, total energy use is high and today’s oil powered vessels are extremely polluting. 

    Image by Arne List [CC BY-SA 2.0], via Wikimedia Commons 12

    A common high-tech idea is to install wind turbines off-shore, convert the electricity they generate into hydrogen, and then use that hydrogen to power seagoing vessels. However, it’s much more practical and energy efficient to use wind to power ships directly, like we have done for thousands of years. Furthermore, oil powered cargo ships often float idle for days or even weeks before they can enter a port or leave it, which makes the relative unpredictability of sailboats less problematic.

    It’s much more practical and energy efficient to use wind to power ships directly.

    As with industrial manufacturing, we now have much better technology and knowledge available to base a worldwide shipping industry on wind power alone. We have new materials to build better and longer-lasting ships and sails, we have more accurate navigation and communication instruments, we have more predictable weather forecasts, we can make use of solar panels for backup engine power, and we have more detailed knowledge about winds and currents. 

    Thomas W. Lawson was a seven-masted, stell-hulled schooner built in 1902 for the Pacific trade. It had a crew of 18.

    In fact, the global wind and current patterns were only fully understood when the age of sail was almost over. Between 1842 and 1861, American navigator Matthew Fontaine Maury collected an extensive array of ship logs which enabled him to chart prevailing winds and sea currents, as well as their seasonal variations. [18]

    Maury’s work enabled seafarers to shorten sailing time considerably, by simply taking better advantage of prevailing winds and sea currents. For instance, a journey from New York to Rio de Janeiro was reduced from 55 to 23 days, while the duration of a trip from Melbourne to Liverpool was halved, from 126 to 63 days. [18]

    More recently, yacht racing has generated many innovations that have never been applied to commercial shipping. For example, in the 2017 America’s Cup, the Emirates Team New Zealand introduced stationary bikes instead of hand cranks to power the hydraulic system that steers the boat. Because our legs are stronger than our arms, pedal powered ‘grinding’ allows for quicker tacking and gybing in a race, but it could also be useful to reduce the required manpower for commercial sailing ships. [19]

    Speed sailing records are also telling. The fastest sailboat in 1972 did not even reach 50 km/h, while the current record holder — the Vestas Sailrocket 2 — sailed at 121 km/h in 2012. While these types of ships are not practical to carry cargo, they could inspire other designs that are.

    Wind & Solar Powered Trains

    We could follow a similar approach for land-based transportation, in the form of wind and solar powered trains. Like sailing boats, trains could be running whenever there is renewable energy available. Not by putting sails on trains, of course, but by running them on electricity made by solar PV panels or wind turbines along the tracks. This would be an entirely new application of a centuries-old strategy to deal with variable energy sources, only made possible by the invention of electricity.

    Wind and solar powered trains would be an entirely new application of a centuries-old strategy to deal with variable energy sources.

    Running cargo trains on renewable energy is a great use of intermittent wind power because they are usually operated at night, when wind power is often at its best and energy demand is at its lowest. Furthermore, just like cargo ships, cargo trains already have unreliable schedules because they often sit stationary in train-yards for days, waiting to become fully loaded.

    Cardiff Docks, a painting by Lionel Walden, 1894 15

    Even the speed of the trains could be regulated by the amount of renewable energy that is available, just as the wind speed determines the speed of a sailing ship. A similar approach could also work with other electrical transportation systems, such as trolleytruckstrolleyboats or aerial ropeways.

    Combining solar and wind powered cargo trains with solar and wind powered factories creates extra possibilities. For example, at first sight, solar or wind powered passenger trains appear to be impossible, because people are less flexible than goods. If a solar powered train is not running or is running too slow, an appointment may have to be rescheduled at the last minute. Likewise, on cloudy days, few people would make it to the office. 

    Solar PV panels cover a railway in Belgium, 2016. Image: Infrabel.

    However, this could be solved by using the same renewable power sources for factories and passenger trains. Solar panels along the railway lines could be sized for cloudy days, and thus guarantee a minimum level of energy for a minimum service of passenger trains (but no industrial production). During sunny days, the extra solar power could be used to run the factories along the railway line, or to run extra passenger (or cargo) trains.

    Consequences for Society: Consumption & Production

    As we’ve seen, if industrial production and cargo transportation became dependent on the availability of renewable energy, we would still be able to produce a diverse range of consumer goods, and transport them all over the globe. However, not all products would be available all the time. If I want to buy new shoes, I might have to wait for the right season to get them manufactured and delivered.

    Production and consumption would depend on the weather and the seasons. Solar powered factories would have higher production rates in the summer months, while wind powered factories would have higher production rates in the winter months. Sailing seasons also need to be taken into account. 

    If I want to buy new shoes, I might have to wait for the right season to get them manufactured and delivered.

    But running an economy on the rhythms of the weather doesn’t necessarily mean that production and consumption rates would go down. If factories and cargo transportation adjust their energy use to the weather, they can use the full annual power production of wind turbines and solar panels.

    A Windmill at Zaandam, a painting by Claude Monet, 1871. 

    Manufacturers could counter seasonal production shortages by producing items ‘in season’ and then stocking it close to consumers for sale during low energy periods. In fact, the products themselves would become ‘energy storage’ in this scenario. Instead of storing energy to manufacture products in the future, we would manufacture products whenever there is energy available, and store the products for later sale instead.

    However, seasonal production may well lead to lower production and consumption rates. Overproducing in high energy times requires large production facilities and warehouses, which would be underused for the rest of the year. To produce cost-efficiently, manufacturers will need to make compromises. From time to time, these compromises will lead to product shortages, which in turn could encourage people to consider other solutions, such as repair and re-use of existing products, crafted products, DIY, or exchanging and sharing goods.

    Consequences for the Workforce

    Adjusting energy demand to energy supply also implies that the workforce adapts to the weather. If a factory runs on solar power, then the availability of power corresponds very well with human rhythms. The only downside is that workers would be free from work especially in winter and on cloudy days.

    However, if a factory or a cargo train runs on wind power, then people will also have to work during the night, which is considered unhealthy. The upside is that they would have holidays in summer and on good weather days.

    Nachtelijk werk in de dokken (Night work at the docks), a painting by Henri Adolphe Schaep, 1856. 

    If a factory or a transportation system is operated by wind or solar energy alone, workers would also have to deal with uncertainty about their work schedules. Although we have much better weather forecasts than in pre-industrial times, it remains difficult to make accurate predictions more than a few days ahead. 

    However, it is not only renewable power plants that are now completely automated. The same goes for factories. The last century has seen increasing automation of production processes, based on computers and robots. So-called “dark factories” are already completely automated (they need no lights because there is nobody there).

    It’s not only renewable power plants that are now completely automated. The same goes for factories.

    If a factory has no workers, it doesn’t matter when it’s running. Furthermore, many factories already run for 24 hours per day, partly operated by millions of night shift workers. In these cases, night work would actually decrease because these factories will only run through the night if it’s windy.

    Finally, we could also limit the main share of industrial manufacturing and railway transportation to normal working hours, and curtail the oversupply during the night. In this scenario, we would simply have less material goods and more holidays. On the other hand, there would be an increased need for other types of jobs, like craftsmanship and sailing.

    What About the Internet?

    In conclusion, industrial manufacturing and cargo transportation — both over land and over sea — could be run almost entirely on variable renewable power sources, with little need for energy storage, transmission networks, balancing capacity or overbuilding renewable power plants. In contrast, the modern high-tech approach of matching energy supply to energy demand at all times requires a lot of extra infrastructure which makes renewable power production a complex, slow, expensive and unsustainable undertaking.

    Adjusting energy demand to supply would make switching to renewable energy much more realistic than it is today. There would be no curtailment of energy, and no storage and transmission losses. All the energy produced by solar panels and wind turbines would be used on the spot and nothing would go to waste. 

    Marina, a painting by Carol Popp de Szathmary, 1800s. 19

    Admittedly, adjusting energy demand to energy supply can be less straightforward in other sectors. Although the internet could be entirely operated on variable power sources — using asynchronous networks and delay-tolerant software — many newer internet applications would then disappear.

    At home, we probably can’t expect people to sit in the dark or not to cook meals when there is no renewable energy. Likewise, people will not come to hospitals only on sunny days. In such instances, there is a larger need for energy storage or other measures to counter an intermittent power supply. That’s for a next post.

    Kris De Decker. Edited by Jenna Collett.

    Part of the research for this article happened during a fellowship at the Demand Centre, Lancaster, UK.


    Sources: 

    [1] Lucas, Adam. Wind, Water, Work: Ancient and Medieval Milling Technology. Vol. 8. Brill, 2006.

    [2] Reynolds, Terry S. Stronger than a hundred men: a history of the vertical water wheel. Vol. 7. JHU Press, 2002.

    [3] Hills, Richard Leslie. Power from wind: a history of windmill technology. Cambridge University Press, 1996.

    [4] Paine, Lincoln. The sea and civilization: a maritime history of the world. Atlantic Books Ltd, 2014.

    [5] One of the earliest large hydropower dams was the Cento dam in Italy (1450), which was 71 m long and almost 6 m high. By the 18th century, the largest dams were up to 260 m long and 25 m high, with power canals leading to dozens of water wheels. [2]

    [6] Although windmills had all kinds of internal mechanisms to adapt to sudden changes in wind speed and wind direction, wind power had no counterpart for the dam in water power.

    [7] This explains why windmills became especially important in regions with dry climates, in flat countries, or in very cold areas, where water power was not available. In countries with good water resources, windmills only appeared when the increased demand for power created a crisis because the best waterpower sites were already occupied.

    [8] Tide mills were technically similar to water mills, but they were more reliable because the sea is less prone to dry out, freeze over, or change its water level than a river.

    [9] Sieferle, Rolf Peter, and Michael P. Osman. The subterranean forest: energy systems and the industrial revolution. Cambridge: White Horse Press, 2001.

    [10] Freese, Stanley. Windmills and millwrighting. Cambridge University Press, 1957

    [11] Wailes, Rex. The English windmill. London, Routledge & K. Paul, 1954

    [12] The global wind pattern is complemented by regional wind patterns, such as land and sea breezes. The Northern Indian Ocean has semi-annually reversing Monsoon winds. These blow from the southwest from June to November, and from the northeast from December to May. Maritime trade in the Indian Ocean started earlier than in other seas, and the established trade routes were entirely dependent on the season. 

    [13] Jenkins, H. L. C. “Ocean passages for the world.” The Royal Navy, Somerset (1973).

    [14] Windmillers had to be alert to keep the gap between the stones constant however choppy the wind, and before the days of the centrifugal governor this was done by hand. The miller had to watch the power of the wind, to judge how much sail cloth to spread, and to be prepared  to stop the mill under sail and either take in or let out more cloth, for there were no patent sails. And before the fantail came into use, he had to watch the direction of the wind as well and keep the sails square into the wind’s eye. [11]

    [15] Apart from electricity, the Industrial Revolution also brought us compressed air, water under pressure, and improved mechanical power transmission, which can all be valuable alternatives for electricity in certain applications. 

    [16] A similar distinction was made in the old days. For example, when spinning cloth, a constant speed was required to avoid gearwheels hunting and causing the machines to deliver thick and thin parts in rovings or yarns. [3] That’s why spinning was only mechanised using water power, which could be stored to guarantee a more regular power supply, and not wind power. Wind power was also unsuited for processes like papermaking, mine haulage, or operating blast furnace bellows in ironworks.

    [17] Very short-term energy storage is required for many mechanical production processes running on variable power sources, in order to smooth out small and sudden variations in energy supply. Such mechanical systems were already used in pre-industrial windmills. 

    [18] Leighly, J. (ed) (1963) The Physical Geography of the Sea and its Meteorology by Matthew Fontaine Maury, 8th Edition, Cambridge, MA: Belknap Press. Cited by Knowles, R.D. (2006) “Transport shaping space: the differential collapse of time/space”, Journal of Transport Geography, 14(6), pp. 407-425.

    [19] Rival teams rejected pedal power because they feared radical change, says Team New Zealand designer. The Telegraph, May 24, 2017.


  • The 19th Century Solar Engines of Augustin Mouchot, Abel Pifre, and John Ericsson

    February 29, 2012 , In Solar Power, with permission from LANDGENERATOR

    The history of renewable energy is fascinating. We posted a while back about early efforts to harness the power of waves. You may also be interested to learn more about the 19th century work of Mouchot and Ericsson, early pioneers of solar thermal concentrators (CSP solar thermal power).

    Early schematics of Augustin Mouchot’s Solar Concentrator.

    Augustin Mouchot taught secondary school mathematics from 1852-1871, during which time he embarked on a series of experiments in the conversion of solar energy into useful work. His proof-of-concept designs were so successful that he obtained support from the French government to pursue the research full-time. His work was inspired and informed by that of Horace-Bénédict de Saussure(who had constructed the first successful solar oven in 1767) and Claude Pouillet (who invented the Pyrheliometer in 1838).

    Augustin Mouchot’s Solar Concentrator at the Universal Exhibition in Paris, 1878.


    Mouchot worked on his most ambitious device in the sunny conditions of French Algeria and brought it back for demonstration at the Universal Exhibition in Paris of 1878. There he won the Gold Medal, impressing the judges with the production of ice from the power of the sun.

    Unfortunately, the falling price of coal, driven by efficiencies of transport and free trade agreements with Britain, meant that Mouchot’s work would soon be deemed unnecessary and his funding was cut soon after his triumph at the Universal Exhibition.

    Abel Pifre and his solar powered printing press. Image from Scientific American, May 1882.

    His assistant, Abel Pifre, would continue his work, however, and demonstrated a solar powered printing press in the Jardin des Tuileries in 1882. Despite cloudy conditions that day, the machine printed 500 copies per hour of Le Journal du Soleil, a newspaper written specially for the demonstration.

    John Ericsson’s Solar Engines

    Meanwhile, the great inventor and engineer John Ericsson had decided to devote the last years of his life to similar pursuits. His work on solar engines spanned the 1870s and 1880s. Instead of relying on steam, he utilized his version of the heat engine, a device that would prove very commercially successful when powered with more conventional fuel sources such as gas.

    From Paul Collins’ 2002 essay The Beautiful Possibility:

    “You will probably be surprised when I say that the sun-motor is nearer perfection than the steam-engine,” [Ericsson] wrote one friend, “but until coal mines are exhausted its value will not be fully acknowledged.” He calculated that solar power cost about ten times as much as coal, so that until coal began to run out, solar power would not be economically feasible. But this, to him, was not a sign of failure—there was no question that fossil fuels would indeed run out someday.

    The great engineer maintained an unshakeable belief in the future of solar power to his last breath; he had set up a large engine in his backyard and was still perfecting it when he collapsed in early 1889. Though his doctor made him rest, Ericsson could not sleep at night: he complained that he could not stop thinking about his work yet to be done.

    Both Mouchot and Ericsson were driven by the prescient understanding that access to coal, the predominant fossil fuel of the time, would eventually run out. And while, new discoveries of petroleum and natural gas have extended our inexpensive access to energy, we are finally now, 140 years later, reaching a time when their predictions are coming true. For the wisdom behind the premise is still as valid today as it was then—nothing that is finite can last forever. These inventors were so far ahead of their time, it is almost scary.

Facebook
LinkedIn