Based in New York’s Hudson Valley, the Center for Post Carbon Logistics (the Center) is engaged in a long-running campaign to bring the idea of coastal trade under sail and other zero emission vessels back to the United States. The Center is currently focusing on turning the New York -New Jersey Harbor and Hudson Valley into a world-class sail freight hub for training, ship building, sailmaking, trade in small wind ships, and resilient working waterfronts. Implementation is underway; cohosting the Conference On Small Scale Inland And Coastal Sail Freight at the Hudson River Maritime Museum with Schooner Apollonia in November 2022, supporting the Northeast Grain Race of 2022, and other similar initiatives. The Center also responded to “Blue Highways RFEI: “NYC DOT, EDC Seek Creative Solutions to Move More Freight Via Waterways Instead of Roadways,” and has provided technical comments on several New York City waterfront plans, RFEIs. and RFPs.
The Center’s publications include the Sail Freight Handbook, now in its second edition, and the Rondout Riverport 2040, a detailed imagination of a working waterfront future for Kingston. Other publications, including an Apprentice Sailor’s Handbook, are under development to support additional training efforts. The Center’s training programs are being developed for sailmaking, working sail, cargo handling, boatbuilding, traditional rigging, designing climate adapted small ports, and other specialties. These courses are planned to be offered starting in 2024, in cooperation with other organizations in the region.
WHY THE CENTER RESPONDED
As shipyard and fabrication work is a good training ground for a number of skilled trades, including welders, metal fabricators, electricians, plumbers, carpenters and cabinetmakers, solar panel installers, riggers, and others, this is a prime industry to take advantage of the training programs offered at BNY. These trades can all create pipelines from the training programs currently hosted at Brooklyn Naval Yard, providing approximately 35-50 permanent jobs and contract or internship jobs for potentially dozens more technicians depending on order-book status.
The products of this facility will not only provide the devices and vehicles necessary for Energy Transition, they will create jobs both fabricating and operations. The fabrication shop employment numbers have been enumerated above, but each vessel launched will require between 4-12 sailors, each bike and trailer set will require a rider, and maintainers for these last-mile machines will also be required. These second-order job impacts can be significant, and while not all of them will accumulate to New York City due to exports, a considerable number will remain in the Metro Area and New York State. For many of the ships, New York sailors may well be the crew, regardless of where in the world they end up sailing.
WHAT OTHER ORGANIZATIONS, BUSINESSES, AND INDIVIDUALS CAN DO
Forming a Coalition for a Zero Carbon Maritime Future in Brooklyn
This future at the Brooklyn Navy Yard is currently beyond the capabilities of the Center for Post Carbon Logistics and its partner organizations, but it is not beyond the capabilities of the Brooklyn Navy Yard Development Corporation. There are a wide range of shipyards in the New York Metro Area, and businesses seeking to acquire new-build vessels for Blue Highways work in the Northeast US region. Finding supporting organizations and initial customers for this endeavor should not be difficult if the BNYDC wishes to pursue this sustainable maritime future for the site. Your letters of support (sample included after our letter) will enable us to build the kind of coalition necessary to convince the Brooklyn Navy Yard Development Corporation to use the facility for what it was designed to do. The Center for Post Carbon Logistics is ready to assist in the design, construction, and operations of a new shipyard at the Brooklyn Navy Yard. Please add your comments so that the request for proposals (RFP) for the redevelopment is compatible with these near zero emission maritime uses.
The following is a letter from the Center for Post Carbon Logistics responding to Brooklyn Navy Yard Development Corporation Request for Expression of Interest (RFEI. Also included is a draft letter of support.
June 17, 2024
Andrew Tran Director of Development
Brooklyn Navy Yard Development Corporation
141 Flushing Ave, Building 77, Unit 801
Brooklyn, NY 11205
Director Tran and All Concerned,
The following is the Center for Post Carbon Logistics (the Center) response to the Brooklyn Navy Yard Development Corporation (BNYDC) RFEI for the unique opportunity to develop a 2.75-acre site on the Brooklyn waterfront for clean energy infrastructure or the production of climate technology.
The intent of the BNYDC’s RFEI is to gather information about how the BNYDC can facilitate the development, production and deployment of a significant amount of [energy transition] “devices” of varying sizes and scales (i.e. heat pumps, solar panels, electric vehicle chargers, transmission stations, battery energy storage systems, to name a few). BNYDC has a rare opportunity to redevelop the Site to provide critically needed clean energy infrastructure and/or establish industrial space that will develop products addressing climate change and create jobs in New York City’s emerging “green economy.”
Ironically the one “device” whose manufacture is most suited to the site is not mentioned – zero emission ships. These ships, now being builtin Europe and Asia include both old and new technology that directly addresses climate change. These designs innovatively combine efficient battery storage, electric motors, solar panels, modern and traditional wind propulsion technology, materials, and ship building technology. With a shipyard available in New York Harbor, these vessels would join the repurposed and purpose built ships in operation right now on the Hudson Riverand the Harbor.
Locally built, from locally sourced and recycled materials, crewed with locally trained mariners, home ported along the Hudson, the Harbor, and the canals, carrying locally grown, locally processed, and locally manufactured goods – with liberty from fossil fuels, these future proof ships will be a positive disruption to the status quo.
The Center is a New York based non-profit organization working to connect communities through resilient and sustainable maritime trade. By supporting the development of climate resilient small ports, sail and solar electric cargo and passenger vessels, and human-scale last-mile logistics solutions throughout the Hudson Valley and Northeast US, the Center advocates for a post-carbon freight network in our own region and across the nation. We work with a coalition of operators of zero/low carbon emission vessels,
Page 2, The Center for Post Carbon Logistics response to Brooklyn Navy Yard Development Corporation RFEI
cargo owners, naval architects, mariners, boat builders, advocates, and researchers all focused on re-building the long-neglected regional “Blue Highways.“
In light of New York City’s array of initiatives to increase maritime freight transport, including DockNYC, Blue Highways, NYC Working Waterfront Plan, Freight NYC, and others, it makes sense that New York would want to see the vessels and infrastructure needed to implement these plans manufactured in New York as an example for the entire nation. The Brooklyn Navy Yard is one of the few places this could be done in the Northeast, let alone New York City, and ships for other regions and international trade could also be built for export in this facility.
The Brooklyn Navy Yard produced US military ships from 1801 to 1966, and through 1975 constructed multiple 220,000-ton Very Large Crude Carriers, tug and barge units, and barges under a commercial shipyard. In 2011 the site was a finalist for constructing a new class of chemical carriers for US Domestic and international buyers. Clearly this facility is still an important American maritime asset, and the offered facility was built as the main fabrication shop for commercial ship construction. The fully enclosed building is empty, with reinforced floors, oversize doors, overhead cranes, and industrial utilities, and there are various public and private incentives available for modernization and upgrades.
The US currently lags in design and construction of low-carbon ships to re-develop a sustainable marine highway system. This does not need to be the case, and a coalition of shipbuilders, naval architects, ship operators, and others can easily be built to make New York and the Brooklyn Navy Yard a central part of the shipbuilding industry once again. The site is ideal for bringing existing successful green vessel designs to the US for domestic trade, and selected export markets. In so doing, scores of permanent maritime and ship yard jobs will be created at BNY, with dozens more seasonal trade jobs, and hundreds of jobs aboard the vessels launched from this facility, which can be incorporated with existing training programs.
The RFEI is open only to “Clean Energy Infrastructure” and “Climate Solutions Urban Manufacturing” proposals. Shipbuilding falls under the latter category and is a strategically important nationally. There are few locations available for and have the capacity for shipbuilding activities, whereas hundreds of locations could be used to build the devices mentioned in the RFEI. Assigning this essential maritime resource to a use which does not require its unique set of circumstances will be a significant blow to future domestic shipbuilding capabilities. This is a matter of National importance considering Jones Act restrictions for domestic trade which require vessels carrying passengers or cargo between two US ports be US built, flagged, and owned, as well as crewed by US citizens or nationals. The US shipbuilding industry is already close to capacity just maintaining and building Navy contracts, leaving little capacity for civilian construction. Diverting possible resources for other uses is a blow not only to the national and global maritime energy transition, but to the possibility of taking the quickest and longest-proven method of reducing roadway traffic congestion, fossil fuel dependence, and transportation-based greenhouse gas emissions by mode-shifting freight to marine highways.
This is a chance to continue a centuries-long tradition at the Brooklyn Navy Yard, while achieving all of the BNYDC’s goals, and supporting additional City, State, and Federal initiatives to reduce greenhouse gas emissions, create jobs, and foster innovation in industry. The current opportunity at the Brooklyn Navy Yard is an unprecedented opportunity to kickstart the construction and employment of short sea, canal, coastal, and cross-harbor near-zero emissions vessels, that will be employed in New York Harbor, the
Page 3, The Center for Post Carbon Logistics response to Brooklyn Navy Yard Development Corporation RFEI
Hudson River, New York State Canal System, and beyond. The site’s history and current situation both lend themselves to this use, and a coalition of the necessary organizations to make this work is already forming around New York Harbor. We look forward to working alongside you in making this sustainable maritime future a reality.
Sincerely,
Andrew Willner
Executive Director
[DRAFT LETTER OF SUPPORT]
Andrew Tran
Director of Development
The Brooklyn Navy Yard Development Corporation
141 Flushing Ave, Building 77, Unit 801
Brooklyn, NY 11205
Director Tran and All Concerned,
We write today in support of the proposed plan by the Center for Post Carbon Logistics to revive domestic shipbuilding at Brooklyn Navy Yard’s Building 293. The National, State, Regional, and Local importance of this proposal cannot be understated. Modal shift of freight to maritime highways is the best and most immediate means of reducing air pollution, greenhouse gas emissions, traffic congestion and casualties, and fossil fuel dependence in the Northeast US and beyond.
Due to the Jones Act of 1920, vessels carrying cargo between two US Ports must be US built, owned, flagged, and crewed, and there are few facilities remaining which can build advanced, 21st century cargo vessels for cross-harbor, short sea, and long distance coastal trade. The number of well paid permanent green jobs generated directly and indirectly by returning this portion of the Brooklyn Navy Yard to shipbuilding will likely number in the hundreds, while creating the hardware needed to realize the vision of New York City as a world hub of green maritime transportation and an example for the world’s energy transition.
[Paragraph describing organization and further reasons for support]
As a result of the Center’s mission and the recent RFEI from New York City regarding Maritime transport, it is appropriate that the Center respond with a statement of how our efforts already support these objectives, and how the City can meet or exceed their goals by looking outside their own borders. A focus on Regional Marine Services as defined in the RFEI will do the most to meet the City’s goal of using marine highways, cycle-trucks, and a working waterfront to tackle roadway congestion, improve safety, and reduce the ecological impact of the City’s economy. The response is available here.
OVERALL CONTEXT
The causes and consequences of climate change are well understood and described in great detail elsewhere, therefore this document will not focus on these effects and threats as such. The context of this response reflects a larger systems view of regional marine services and the potential for marine movement of goods and people; one which looks at more than the trucks coming into the NYC roadways, but those simply passing through as well. The City’s objectives are unlikely to be met by simply working within its own borders, due to the geography involved. The City reaching outside its own borders to improve life in the metro area is not novel: The preservation of farm and other conservation land in the Catskills in order to protect the City’s water supply is a prime example of this type of extra-mural work which the City has engaged in for over a century.
The costs of overcrowded roadways are extremely high, as acknowledged in the RFEI. By diverting as much trade as possible off the roadways and onto the water, these costs can be significantly reduced. As New York has some of the most congested roadways in the United States, it is imperative to relieve this pressure. Any reduction in truck miles traveled reduces emissions as well as congestion, and reduced congestion leads to reduced emissions per vehicle.
For example, reducing truck miles and emissions in the New York Metro Area (NYMA) hinges on a significant geographical junction which sits in the middle of the NYMA: Long Island is only accessible by roads going through New York City, via the Queens Expressway Bridge from the North or East, or across the Verrazano Narrows Bridge from the West and South. By creating and subsidizing the use of coastal trade from New Jersey to ports along the shores of Long Island, a significant amount of trucking miles could be avoided on the Verrazano Narrows Bridge, while a series of ferries from Southern New England and the Hudson Valley to Long Island would similarly reduce truck traffic on New York’s highways. Connections between Boston and Philadelphia on sailing container vessels could remove hundreds of trucks per day, as could similar zero-emissions coastal services which bring trade around, as opposed to through, the city’s highways and bridges.
Even to allow for deliveries within the City’s boundaries, outer-ring hubs for modal shift should be encouraged in the Hudson Valley, New Jersey, and Connecticut. The farther out the cargo switches, the lower the roadway congestion will be and the lower the climate forcing emissions. This will also reduce congestion at the peripheries of the city, allowing for freer movement and higher air quality for all the Metro Area’s citizens, particularly in disadvantaged areas. The more points of embarkation for cargo outside the city, the more resilient and emissions efficient the entire system will be.
By expanding the available pool of ports which might be used for freight trans-shipping the overall impact on New York’s roadway congestion, greenhouse gas emissions, and quality of life can be enhanced. While initial constructions may be sited in close proximity to the City, creating an expanding network over the next few years is an economically beneficial plan which can alleviate the significant problems the City is now facing. In cooperation with State-Level initiatives to revitalize the New York State Canal System, full-length maritime connections can be restored to the Champlain Valley, Central and Western New York, and the Great Lakes, creating amplified benefits to the state as a whole.
One of the greatest advantages of this plan of action is that it can be implemented immediately and with little investment or administrative overhead: Simply creating a program to pay for trucks to travel free-to-operator on a number of existing ferries will immediately divert traffic as this is advertised. This increase in business for ferry companies will create an incentive to increase their capacity on existing routes. As the success of such a pilot program grows, other routes and ports can be deployed and put into service. With a coherent regional plan to create mutual advantage, a large-scale maritime sector can be revived in the New Jersey-New York-Connecticut corridor. The response is available here.
A greater adoption of waterborne freight, powered by low-carbon energy alternatives, could take the industry into a future where freight is no longer a sustainability pariah.
A reversion to wind power for oceangoing vessels, at least as an assist, has been championed for decades, and could certainly help. But there are other plans afoot, and favoring waterborne over road is the way forward for the freight industry in general, according to Andrew Willner, executive director at The Center for Post Carbon Logistics.
Ships Could Take Freight Off the Roads
The new, sustainable version of “intermodal” could mean combining road and rail with coastal and inland water whenever possible. Willner even envisions the emergence of a new class of freight service provider, a low-carbon third-party logistics provider, or LC3PL.
The stated mission of The Center for Post Carbon Logistics is to research and assist in the implementation of appropriate post-carbon maritime technology needed to keep commerce and transportation viable in a “carbon-constrained” world.
It has its work cut out for it. American commerce remains addicted to trucking — the number of trucks on the road has relentlessly increased, from just over 4.5 million in 1970 to nearly 13.5 million in 2020, according to the Bureau of Transportation Statistics.
Worse, BTS says long-haul freight truck traffic on the National Highway System is projected to increase from 311 million miles per day in 2015 to 488 million miles per day by 2045. Ozone and fine particulate matter from vehicle emissions in 2016 led to an estimated 7,100 premature deaths in the Northeast and Mid-Atlantic regions of the U.S., according to the Harvard T.H. Chan School of Public Health.
The cost isn’t just bad air quality and heat domes. An average of 5,000 people a year are killed in crashes involving large trucks, a death toll that has soared by almost 50% since 2011, according to the non-profit news service ProPublica. Tens of thousands more have been injured.
Real Possibilities, Many Obstacles
Taking freight off the roads is not only desirable for multiple reasons; it is also attractively feasible.
A great example: The Hudson River, which is navigable by cargo ships with a draft of up to 29 feet from New York City, up the densely populated Hudson Valley, to the state capital of Albany and beyond. At present, one sees only the occasional heating oil or project cargo barge, pushed by tugboats, lumbering up and down the river. But 100 years ago, this mighty waterway, which connects via a huge system of canals to the Great Lakes and the St. Lawrence River, was one of the main cargo arteries of North America.
Then, of course, river traffic was powered by coal, contributing to life-threatening pollution, not just CO2 emissions. Today, it’s possible to haul up to 24 twenty-foot equivalent units (TEUs) of cargo via ready-to-build “electric clippers,” which combine wind, solar and battery power, reaching speeds up to 10 knots.
Add in human-electric powered cargo tricycles, or “trikes” for last-mile delivery, and there’s an opportunity to reach tens of millions of consumers within a day without a single diesel-powered truck in sight.
So far, there is only one maverick vessel attempting to achieve this vision: the 64-foot-long Schooner Apollonia, which since 2020 has been transporting cargo on the Hudson River and in greater New York Harbor by wind, current, and tide alone.
Willner says a large obstacle in the way of a post-carbon freight future that favors water wherever possible is a reluctance to embrace both new and old technologies – not just sail, but solar, battery, methane and biofuel. With a shift in thinking, Willner sees an opportunity to move massive amounts of medium-range freight deliveries, in particular, off roads and onto waterways.
But a lack of vision is only part of the problem; there are also the tough realities of economics. U.S. roads are built and maintained with $204 billion in government funds per year (more than is spent on police), but rail freight infrastructure and waterways receive nothing. “If this had the same subsidies we have to ship by road, we could do this next week,” Willner says.
Chart: Union Pacific
Land Ahoy!
The trick to making waterborne freight vessels viable is to connect them with low-carbon land-based transport at both ends. Recent changes in consumer habits open new opportunities. The growth of e-commerce, which generally trends toward smaller deliveries, means alternatives to full-size trucks — small enough to be run on something other than an internal combustion engine — are very attractive.
UPS is successfully combining human and electric power by deploying tricycles (UPS Cargo Cruisers and Cyclo Cargos, which are both conventional and electrically assisted) in Hamburg, Dublin and Munich, and is testing this concept in other European cities. A UPS spokesperson says these tricycles are ideal for navigating dense, highly trafficked areas, delivering from container depots in the middle of the delivery area in each city. As such, they replace delivery trucks to reduce congestion and carbon emissions, and can even operate in pedestrian zones.
Another example is Austrian logistics firm Gebrüder Weiss, which announced in August that it’s using electric tricycles for deliveries to private homes and companies located on the Croatian islands of Rab and Lošinj.
But progress in adopting low-carbon, short-haul freight vehicles in the U.S., compared to Europe and Asia, is slow. The U.S. Department of Transportation announced in May that it’s testing a four-wheeled, battery-powered pedal assist cargo bike it intends to deploy later this summer on bike lanes and other roadway projects in New York City. But these and other projects remain small-scale and tentative. They also tend to focus, understandably, on densely populated areas where the last-mile could be a few hundred yards. That explains, at least partly, why Europe is ahead — population density in the EU is 300 persons per square mile, versus 81 persons in the U.S. All the same, pilot programs are delivering hopeful results.
“When it comes to the U.S., we’re looking to our extensive urban solutions network outside the U.S. as potential blueprints for reimagining our industry here,” the UPS spokesperson says. “There is no one-size-fits-all solution when it comes to sustainable last-mile deliveries in busy city centers. Every city has different challenges and requirements, and we are taking the learnings from our previous projects as we continue to explore various innovative urban logistics solutions to best serve our customers while working alongside cities, state and federal government partners.”
Future-Proof Liberty Ships
Willner looks forward to a proliferation of the Electric Clippers, and cites various compelling advantages of the ships, aside from their low-carbon profile. First, they’re American built. That means they can ply not only international routes, but also qualify under the U.S. Jones Act, which requires goods shipped between U.S. ports to be transported on ships that are built, owned, and operated by U.S. citizens or permanent residents. They can, therefore, deliver freight between U.S. coastal destinations (and inland ones too). Willner calls them “future-proof Liberty ships.”
Further, one of the caveats of electric-powered vehicles, even if the electricity is generated by “clean” sources, is that lithium-ion batteries are problematic in multiple ways, including difficulties with safe disposal, and raw materials coming from questionable sources. But the old, lead-acid batteries are four or five times heavier, and on other forms of transport tip the scales against efficiency and therefore sustainability. However, they’re more than welcome on a ship, Willner points out. “We want the ballast!”
Meanwhile, Back at Sea
Large, oceangoing freight vessels with sails seem to be actually becoming a commercial reality. According to The Conversation, Japanese bulk carrier MOL is operating a wind-assisted ship. American food giant Cargill is working with Olympic sailor Ben Ainslie to deploy WindWings on its routes. Swedish container line Wallenius is aiming for Oceanbird to cut emissions by up to 90%. The French start-up Zephyr & Borée has built the Canopée, which will transport parts of European Space Agency’s Ariane 6 rocket this year.
In January 2021, the London-based International Windship Association and its 150-plus members declared a “Decade of Wind Propulsion.” Association secretary Gavin Allwright says the initiative, after a delay caused by the COVID-19 pandemic, is now getting wind in its sails. There are currently 23 large ships — including two very large crude carriers (VLCCs) – fitted with some form of wind propulsion. More importantly, Allwright says, it took 12 years to get to 23; the number will double in the next 12 months.
And sometimes, the old ways offer a fresh alternative. The BBC reports that Dutch company Ecoclipper in June ran a voyage on a 1912 traditional two-mast Dutch sail barge, carrying mixed loads that included cheese, wine and olive oil, from Amsterdam to Porto in Portugal and back again, with stops in Spain, France and England. Chief executive Jorne Langelaan told the BBC he hopes to build a fleet of up to 25 wind-powered cargo ships in the future, utilizing the latest design technology, and capable of carrying 700 metric tons of cargo, at a cost in the region of €9 million ($9.85 million) each. A greater use of wind-powered freight is the only way long-distance transport and travel will remain feasible in the future, Langelaan said. “The big goal of Ecoclipper is to connect the continents [with] emission-free cargo shipping.”
Please support the Sustainable Logistics Fellow and the important work of the Center for Post Carbon Logistics with a contribution.
Highlights from the Andrus Fellowship to date: June – November 2023
Captain Sam Merrett and “Supercargo” Brad Vogel aboard the Schooner Apollonia
Inaugural Andrus Fellow Brad Vogel has spent six busy months working to both:
tangibly grow the regional sustainable logistics network and
strategize/collaborate for future growth of that network in the greater Hudson Valley and greater New York Harbor regions.
While the Fellowship’s focus continues to center on the waterborne sustainable sail freight route run by the Schooner Apollonia, it also encompassed significant shore-side and ship-to-shore elements designed to increase multi-modal linkages for moving goods while optimizing to reduce or eliminate carbon-based emissions.
Tangibly Growing the Regional Sustainable Logistics Network – On-Water
Route Map
Additional routes where sustainable low/no carbon transport of goods to and/or from a new port of call via sail freight shipping (wind, tide and current powered) was made possible through the planning, coordination, and logistical efforts of the Andrus Fellow:
Direct Sail Freight Service to/from New Ports (connecting existing Schooner Apollonia network): West Haverstraw, NY, Dobbs Ferry, NY, Brooklyn Navy Yard, Brooklyn Greenpoint, Brooklyn Gowanus, Brooklyn Hoboken, NJ.
On-Ship Sail Freight Service to New Ports (on-shipping from an existing Apollonia docking site): Rockaways, Queens (via the schooner Deliverance from Red Hook, Brooklyn)
On-Ship Sail Freight Service from New Ports (on-shipping from to existing Apollonia ports): St. Malo, Brittany, France (via the schooner Grain de Sail I to all Apollonia ports)
These expansions of sail freight service opened new port nodes and made it possible for businesses, organizations, and individuals in those ports to participate in the existing Schooner Apollonia sail freight network, which has now expanded to include approximately 30 proven ports of call, as well as an international sail freight linkage via the French company Grain de Sail.
Tangibly Growing the Regional Sustainable Logistics Network – Shoreside
A key part of the Fellow’s mission is to expand shoreside linkages to and from the water’s edge that are more sustainable than baseline fossil fuel-powered vehicles. Replacing links in the network in New York that ties into the existing Schooner Apollonia riverine network helps to “green the branches out from the trunk” that has been established.
Germantown to Hudson electric truck Shore Angel
Ossining dock to brewery EV convoy of Shore Angels
Clinton Corners to Poughkeepsie EV Shore Angels
Kingston to Poughkeepsie Shore Angel Poughkeepsie dock to breweries EV Shore Angels
Newburgh dock to brewery cargo bike route
West Haverstraw dock to brewery cargo bike route
Marine Park Brooklyn to Brooklyn Bridge Park EV Shore Angel
Coxsackie to Hudson EV Shore Angel
Gowanus to Brooklyn Bridge Park cargo bike
Vulture Carter Long Island City to Greenpoint cargo bike
Vulture Carter Greenpoint dock to brewery and restaurant cargo bike route
Gowanus to Red Hook cargo bike Vulture Carter
Red Hook to Gowanus cargo bike
Vulture Carter Brooklyn Navy Yard to Greenpoint cargo bike
cargo bike route Brooklyn Bridge Park to Red Hook
Proving these potential replacement means/conveyances even in a pilot mode helps to build the muscle memory, institutional memory, and community necessary to further develop and make the more sustainable methods permanent. Cargo bikes and trailers, a collective of cargo bike enthusiasts, a biodiesel truck, and a variety of electric vehicle drivers all contributed to building out these links, many of them falling under the Shore Angel volunteer program developed by the Fellow in coordination with the Schooner Apollonia team.
Growing and proving new potential cargoes as suitable for transport within the existing/growing sustainable shipping network in the region is another ongoing goal of the Fellow. The following cargo types moved through the regional sustainable shipping system centered on Schooner Apollonia for the first time in 2023 due to the Fellow’s efforts:
Cross Branding
Lumber
Sunflower oil
Kegs of beer
Cheese
Cutting boards
Compost soil
Air compressors
Rowboats
Bat boxes
Nuts
Black currant juice
Field salt
Sail cloth
Meat sticks
Kelp paper
Granola
Upcycled soap
Soda
Bread bricks
Norwegian crackers
Dried black currants
Compost inputs
Double sail freight coffee
Marinara sauce
Wind Shipped
Demonstrating the ability of the system to move goods (whether as a new typology/form or as a new market segment) successfully helps to facilitate further future growth of cargoes in those categories. Broadening the conception of what goods “work” provides a beach head for new prospective shipping partners who may not have seen themselves as eligible or relevant previously.
Planning for Regional Linkages to International Sustainable Shipping Ventures
Connecting the existing regional sustainable shipping network into the growing global network of international sustainable shipping is a continuing priority for the Fellow. The following efforts went into building greater linkages and helping to anticipate expected increases in interconnection at the Port of NY and NJ.
Grain de Sail – Multiple meetings, correspondence, and collaborations with Matthieu and Pierre from French sail freight company Grain de Sail regarding growing cargo on-shipping, developing backhaul cargo for Grain de Sail II.
Timbercoast – In-depth correspondence with Cornelius and Torsten from Timbercoast out of Germany regarding first-ever sail freight docking logistics at New York in early 2024 for the ship Avontuur.
VELA – Meeting and correspondence with Michael from the VELA team regarding NY Harbor/NJ coordination and mutual growth of cargoes with the French sail freight venture.
TOWT – Communications with Guillaume from TOWT regarding schedule of upcoming port calls to NYC.
Sail Cargo – Discussions with Alejandra at Sail Cargo regarding docking, cargo, and logistics engagement opportunities with New Jersey ports, backhaul cargo to South America.
International Wind Ship Alliance – Discussions with Gavin from the International Windship Alliance regarding overall uptake on wind shipping, policy, and attendance at meeting of IWSA North America chapter.
Wind Support NYC – Meetings with Laurent and Laurent regarding international sail freight engagement with New York Harbor, as well as the need for a green shipping incubator pier in NYC.
Christiaan de Beukeler – Met with author of Trade Winds book, conversations regarding international sail freight.
Consultation/Planning on Decarbonizing Goods Transport Systems
The Fellowship provided a public-facing position that community members sought out for more thought and leadership on decarbonizing systems and the movement of goods across a wide range of spaces. The following list is illustrative and not comprehensive; there have been many, many instances where the role has helped to focus, catalyze, or advance ideas for decarbonizing transport of goods at multiple levels.
REV X – Ongoing discussions seeking opportunities to utilize cargo bike/pedicab transport services in New York City.
Merchants of Ellenville, NY – Discussions with Ulster County Economic Development and sustainability officials, as well as APA NY Metro Chapter leadership, regarding piggybacking freight usage of UCAT bus system to connect Kingston, Ellenville, and hamlets in between and obviating the need for multiple duplicative fossil fuel-powered vehicular trips.
City of Kingston – Discussions with Julie Noble, sustainability lead, regarding the possibility of a ferry connecting Rhinecliff Amtrack station with Kingston (potentially chartering solar vessel Solaris) and the need for a connector trolley up from Rondout into rest of Kingston.
Discussions with NY Harbor tug boat company contact about carbon limits and means of decarbonizing maritime systems.
Creations Therrien – Discussions about finding alternate low carbon transport methods for live edge slabs for a furniture making company.
Zuzu’s Petals – Discussions regarding decarbonizing compost disposal processes for a floral business.
Principles GI Coffee House – Discussions and planning regarding decarbonizing delivery of baked goods on a daily basis via alternate means such as cargo bikes instead of fossil fuel-powered vans.
Brad on human electric bike
Development of Further Decarbonizing Systems
Application for Grant – Park Slope Civic Council – Effort to grow and fund the Vulture Carting cooperative of cargo bike enthusiasts that have grown up at Principles GI Coffee House.
Discussions with Pacific Northwest Individual regarding possible start of sail freight efforts in greater Puget Sound area.
NYC Financial District – East Side Resiliency Plan – Attend meetings and provide input suggesting the creation/incorporation of a green shipping incubator pier in Lower Manhattan.
Blue Highways RFEI – Speaking with multiple parties about the need to increase participation and engagement on the effort to transfer more freight to waterborne means in New York City with sustainable last mile.
Blue Highways Dock Prototype
Please support the Sustainable Logistics Fellow and the important work of the Center for Post Carbon Logistics with a contribution.
You Made It Happen! The Center for Post Carbon Logistics Achieves Fundraising Goal
Meet the Andrus Sustainable Logistics Fellow Apollonia Supercargo Brad Vogel. Brad has been at the forefront of developing an alternate green logistics framework in the NY region since 2019, and we are excited to see him going full time on the sustainable shipping and logistics front. He will start the fellowship in June of this year.
The Center for Post Carbon Logistics (C4PCL) has met its fundraising goal for the Erik Andrus Sustainability Fellowship. So many of you helped make that happen – and the C4PCL, the Schooner Apollonia, and all the organizations and businesses that will benefit from Brad’s work, could not be more grateful!
Brad Aboard Apollonia The new Fellow will help Apollonia and other sustainable ventures in the Hudson Valley and New York Harbor grow a robust regional green logistics network. Building that network will reduce emissions in communities in the Hudson Valley and New York City.
You can can continue to support the new Andrus Fellowship and the mission of the Center for Post Carbon Logistics. Please consider making a tax-deductible donation here . If you don’t require a receipt you can donate by check here.
Some background:
The Erik Andrus Sustainable Regional Logistics Fellowship is a project of The Center for Post Carbon Logistics. The position is named for Erik Andrus, the rice farmer who created the Vermont Sail Freight vessel Ceres and inspired many regional “make-sustainability-real” efforts. As such the Coordinator will emphasize practical, day-to-day work, but also fundraising and meeting with various governmental and commercial entities, toward these goals but also emphasize sharing of information and building of community to aid in the overall effort.
Vermont Sail Freight Vessel Ceres
The Andrus Fellow (coordinator) will initiate, support, and develop a sustainable logistics network that links manufacturers, suppliers, wholesalers, retailers and consumers, key components of sustainable transport supply chain on the Hudson, the New York State canal system, New York Harbor, and coastal New York. This sustainable logistics network will reduce fossil fuel use and carbon emissions from the transportation of goods and people throughout the region.
Schooner Apollonia is America’s only sustainable sail freight vessel, operating on the Hudson River and in New York Harbor. Over the past three years, Apollonia has shipped over a hundred thousand pounds of goods by wind, reducing regional emissions. Apollonia has made something clear: taking action to build toward a more sustainable post-carbon approach to logistics is possible in our region. Even if the initial steps are small, we need to act.
Schooner Apollonia
Inspired by Apollonia’s work, it’s time to take the next step toward greater regional impact – with a full-time fellow dedicated to sustaining and growing tangible, feasible low carbon transport projects. Your tax-deductible donation to the Center for Post Carbon Logistics will support the hiring of the Andrus Sustainability Fellow to maintain and grow the expanding regional green logistics network that Apollonia has helped pioneer.
Trade Route
In the first year, the Fellow will serve the Schooner Apollonia in expanding and strengthening the logistical backbone of its sustainable sail freight network of distribution, storage, transport, and fulfillment services, while also providing support to a select group of regional low/no carbon first and last mile logistics companies, producers, purveyors, wholesalers, retailers, and end users.
Specific tasks will include but may not be limited to:
Documenting, improving, and expanding Apollonia’s existing trade routes
Providing outreach and interpretation of Apollonia’s mission through virtual, customer venues, and “on dock” events.
Coordinating with other decarbonization efforts (both high profile and/or small-scale) across a range of prospective community-centered and commercial ventures
Analyzing and greening every logistical input to and output from the Apollonia’s existing trade routes with over 100 shipping partners.
Being the point of contact for the 20+ existing docking partners (private, municipal, and non-profit), the hundreds of individual customers, low no carbon first and last mile logistics providers, and thousands of supporters.
Although initially focused on wind-powered vessels, all practicable methods of eliminating fossil fuel-powered transport will be a priority. The coordinator will also promote solar vessels, live/electric cargo bicycles and trailers, as well as electric, biofuel and hydrogen powered vehicles, and will participate in the development of a regional network of linked low/no-carbon businesses, organizations, and institutions, and the establishment of resilient regional micro-hubs (ranging from moderate-scale ports and required infrastructure, depots and warehouses, and partnerships with on-call green transport support networks).
The long-term aim is to develop a regenerative regional for profit/not for profit hybrid cooperative logistics provider that takes on and continues the work of the fellowship. The goal of both the fellowship and the emergent entity is the same: to create and promote real, practical, resilient change, to build tangibly toward a future of an operational post carbon logistics with end-to-end management of specific services, a vital part of maritime based supply chain management.
During the initial year of the fellowship, the coordinator will liaise with the Director of The Center for Post Carbon Logistics and the Captain of Schooner Apollonia on a regular basis. The role, in the first year, reflecting the work required for coordinating, executing, and improving Apollonia’s existing logistics and growing the regional sustainability network. Thank you for supporting this important position, program, and its outcome.
It is surprisingly difficult to build a carbon neutral sailing ship. This is even more the case today, because our standards for safety, health, hygiene, comfort, and convenience have changed profoundly since the Age of Sail.
On board the ship `Garthsnaid’ at sea. A view from high up in the rigging. Image by Allan C. Green, circa 1920.
The sailing ship is a textbook example of sustainability. For at least 4,000 years, sailing ships have transported passengers and cargo across the world’s seas and oceans without using a single drop of fossil fuels. If we want to keep travelling and trading globally in a low carbon society, sailing ships are the obvious alternative to container ships, bulk carriers, and airplanes.
However, by definition, the sailing ship is not a carbon neutral technology. For most of history, sailing ships were built from wood, but back then whole forests were felled for ships, and those trees often did not grow back. In the late nineteenth and early twentieth century, sailing ships were increasingly made from steel, which also has a significant carbon footprint.
The carbon neutrality of sailing in the 21st century is even more elusive. That’s because we have changed profoundly since the Age of Sail. Compared to our forebears, we have higher demands in terms of safety, comfort, convenience, and cleanliness. These higher standards are difficult to achieve unless the ship also has a diesel engine and generator on-board.
The revival of the sailing ship
The sailing ship has seen a modest revival in the last decade, especially for the transportation of cargo. In 2009, Dutch company Fairtransport started shipping freight between Europe and the Americas with the Tres Hombres, a sailing ship built in 1943. The company remains active today and has a second ship in service since 2015, the Nordlys (built in 1873).
Since then, others have joined the sail cargo business. In 2016, the German company Timbercoast started shipping cargo with the Avontuur, a ship built in 1920. [1] In 2017, the French Blue Schooner Company started transporting cargo between Europe and the Americas with the Gallant, a sailing ship that was built in 1916. [2] All these sailing ships were constructed in the twentieth or nineteenth century, and were restored at a later date. However, a revival of sail cannot rely on historical ships alone, because there’s not enough of them. [3]
The Noach, built in 1857.
At the moment, there are at least two sailing ships in development that are being built from scratch: the Ceiba and the EcoClipper500. The first ship is being constructed in Costa Rica by a company named Sailcargo. She is built from wood and inspired by a Finnish ship from the twentieth century. The second ship is designed by a company called EcoClipper, which is led by one of the founders of the Dutch FairTransport, Jorne Langelaan. Their EcoClipper500 is a steel replica of a Dutch clipper ship from 1857: the Noach.
“Old designs are not necessarily the best”, says Jorne Langelaan, “but whenever proven design is used, one can be sure of its performance. A new design is more of a gamble. Furthermore, in the 20th and 21st century, sailing technology developed for fast sailing yachts, which is an entirely different story compared to ships which need to be able to carry cargo.”
More economical sailing ships
These two ships – one under construction and one in the design phase – have the potential to make sail cargo a lot more economical than it is today. That’s because they have a much larger cargo capacity than the sailing ships currently in operation. As a ship becomes longer, her cargo capacity increases more than proportionally.
The Eco-Clipper
The 46 metre long Ceiba is powered by 580 m2 of sails and carries 250 tonnes of cargo. The 60 metre long EcoClipper500 is powered by almost 1,000 m2 of sails and takes 500 tonnes of cargo. For comparison, the Tres Hombres is not that much shorter at 32 metres, but she takes only 40 tonnes of cargo – twelve times less than the EcoClipper500. A larger ship is also faster and saves labour. The Tres Hombres requires a crew of seven, while the EcoClipper500 only has a slightly larger crew of twelve.
Life cycle analysis of a sailing ship
Although the EcoClipper500 is still in the design phase, she will be the focus of this article. This is because the company conducted a life cycle analysis of the ship prior to building it. [9] As far as I know, this is the first life cycle analysis of a sailing ship ever made. The study reveals that it takes around 1,200 tonnes of carbon to build the ship.
Half of those emissions are generated during steel production, and roughly one third is generated by steel working processes and other shipyard activities. Solvent-based paints as well as electric and electronic systems each account for roughly 5% of emissions. The emissions produced during the manufacturing of the sails are not included because there are no scientific data available, but a quick back-of-the-envelope calculation (for sails based on aramid fibres) signals that their contribution to the total carbon footprint is very small. [4]
The EcoClipper500 has a carbon footprint of 2 grammes of CO2 per tonne-kilometre, which is five times less than the carbon footprint of a container ship.
If these 1,200 tonnes of emissions are spread out over an estimated lifetime of 50 years, then the EcoClipper500 would have a carbon footprint of about 2 grammes of CO2 per tonne-kilometre of cargo, concludes researcher Andrew Simons, who made the life cycle analysis for the ship. This is roughly five times less than the carbon footprint of a container ship (10 grammes CO2/tonne-km) and three times less than the carbon footprint of a bulk-carrier (6 grammes CO2/tonne-km). [5]
Looking aft from aloft on the ‘Parma’ while at anchor. Alan Villiers, 1932-33. Villiers’s work vividly records the period of early 20th century maritime history when merchant sailing vessels or ‘tall ships’ were in rapid decline.
Transporting one ton of cargo over a distance of 8,000 km (roughly the distance between the Caribbean and the Netherlands) would thus produce 16 kg of carbon with the EcoClipper500, compared to 80 kg on a container ship and 48 kg on a bulk carrier. The proportions are similar for other environmental factors, such as ozone depletion, ecotoxicity, air pollution, and so on.
Although the sailing ship boasts a convincing advantage, it may not be as big as you might have expected. First, as Simons explains, there’s scale. A container ship or bulk carrier enjoys the same benefits over the EcoClipper500 as the EcoClipper500 enjoys over the Tres Hombres. It can take a lot more cargo – on average 50,000 tonnes instead of 500 tonnes – and it needs only a slightly larger crew of 20-25 people. [6]
Second, fossil fuel powered ships are faster than sailing ships, meaning that fewer ships are needed to transport a given amount of cargo over a given period of time. The original ship on which the EcoClipper500 is based, sailed between the Netherlands and Indonesia in 65 to 78 days, while a container ship does it in about half the time (taking the short cut through the Suez canal).
Building a fleet of sailing ships
There’s two ways to further lower the carbon emissions of sailing ships in comparison to container ships and bulk carriers. One is to build ships from wood instead of steel, such as the Ceiba. If the harvested trees are allowed to grow back (which the makers of the Ceiba have promised), such a ship may even be considered a carbon sink.
However, there’s a good reason why the EcoClipper500 will be made from steel: the company’s aim is to build not just one ship, but a fleet of them. Jorne Langelaan: “There are few shipyards who can deliver wooden ships nowadays. Steel makes it easier to build a fleet in a shorter period.”
A possible compromise would be a composite construction, in which a steel skeleton is clad with timber keel, planks, and deck. Andrew Simons: “This would reduce the carbon footprint of construction by half. It could also be feasible to make superstructures and some of the mast sections and spars from timber instead of steel.”
Driving sprays over the main deck of the ‘Parma’. Alan Villiers, 1932-33.
Towards the future, another possibility to further decrease a sailings ship’s emissions per tonne-km is to build it even larger. While the EcoClipper500 has much more cargo capacity than the cargo sailing ships now in operation, she is far from the largest sailing ship ever built.
Historical ships such as the Great Republic (5,000 tonnes), the Parma (5,300 tonnes), the France II (7,300 tonnes), and the Preussen (7,800 tonnes), were more than 100 metres long and could take more than ten times the freight capacity of the EcoClipper500. Langelaan already dreams of a EcoClipper3000.
Passengers
Most cargo sailing ships travelling across the oceans today can also take some passengers. Fully loaded with cargo, the EcoClipper500 takes 12 crew members, 12 passengers, and 8 trainees (passengers who learn how to sail). If the upper hold deck is not used for cargo, another 28 trainees can join, so that the ship can take up to 60 people on board (with a smaller cargo volume: 480 m3 instead of 880 m3).
The carbon footprint for passengers amounts to 10 g per passenger-km, compared to roughly 100 g per passenger-km on an airplane.
Consequently, and since ocean liners have disappeared, the EcoClipper500 also becomes an alternative to the airplane. According to the results of the life cycle analysis, the carbon footprint for passengers on the EcoClipper500 amounts to 10 grammes per passenger-kilometre, compared to roughly 100 grammes per passenger-kilometre on an airplane. Transporting one passenger thus produces as much carbon emissions as transporting 1 tonne of freight.
Engine or not?
Importantly, the life cycle analysis of the EcoClipper500 assumes that there is no diesel engine on-board. On a sailing ship, a diesel engine can serve two purposes, which can be combined. First, it allows to propel the ship when there is no wind or when sails cannot be used, for example when leaving or entering a harbour. Second, combined with a generator, a diesel engine can produce electricity for daily life on board of the ship.
For most of history, energy use on-board of a sailing ship was not too problematic. There was firewood for cooking and heating, and there were candles and oil lamps for lighting. There were no refrigerators for food storage, no showers or laundry machines for washing and cleaning, no electronic instruments for navigation and communication, no electric pumps in case of leaks or fire.
However, we now have higher standards in terms of safety, health, hygiene, thermal comfort, and convenience. The problem is that these higher standards are difficult to achieve when the ship does not have an engine that runs on fossil fuels. Modern heating systems, cooking devices, hot water boilers, refrigerators, freezers, lighting, safety equipment, and electronic instruments all need energy to work.
Crewman of the ‘Parma’ with a model of his ship. Alan Villiers, 1932-33.
Modern sailing ships often use a diesel engine to provide that energy (and to propel the ship if necessary). An example is the Avontuur from Timbercoast, who has an engine of 300 HP, a 20 kW generator, and a fuel tank of 2,330 litres. Large sail training vessels and cruising ships have several engines and generators on-board. For example, the 48m long Brig Morningster has a 450 HP engine and three generators with a total capacity of 100 kW, while the 56m long Bark Europa has two 365 HP engines with three generators – and burns hundreds of litres of oil per day.
Depending on the lifestyle of the people on board, the emissions per passenger-km may rise to, or surpass, the levels of those of an airplane.
Obviously, the emissions and other pollutants of these engines need to be taken into account when the environmental footprint of a sail trip is calculated. Depending on the lifestyle of the people on board, the emissions per passenger-km may rise to, or surpass, the levels of those of an airplane. To a lesser extent, electricity use on-board also increases the emissions of cargo transportation.
Energy use on board a sailing ship
The EcoClipper500 has no diesel engine on board, which is a second reason to focus on this ship. Obviously, a sailing ship without an engine cannot proceed her voyage when there’s no wind. This is easily solved in the old-fashioned way: the EcoClipper500 stays where she is until the wind returns. A ship without an engine also needs tug boats – which usually burn fossil fuels – to get in and out of ports. For the EcoClipper500, these tug services account for 0.3 g/tkm of the total carbon footprint of 2 g/tkm.
Without a diesel engine, the ship also needs to generate all energy for use on board from local energy sources, and this is the hard part. Renewable energy is intermittent and has low power density compared to fossil fuels, meaning that more space is needed to generate a given amount of power – which is more problematic at sea than it is on land.
Renewing caulking on the poop of the ‘Parma’. Alan Villiers, 1932-33.
To make the EcoClipper500 self-sufficient in terms of energy use, a first design decision was to shift energy use away from electricity whenever possible. This is especially important for high temperature heat, which cannot be supplied by electric heat pumps. The ship will have a pellet-stove on board to provide space heating, as well as a biodigester – never before used on a ship – to convert human and kitchen waste into gas for cooking. Thermal insulation of the ship is another priority.
Nevertheless, even with pellet-stove and biodigester (which themselves require electricity to operate), and with thermal insulation, energy demand on the ship can be as high as 50 kilowatt-hours of electricity per day (2 kW average power use). This concerns a “worst-case normal operation” scenario, when the ship is sailing in cold weather with 60 people on board. Power use will be lower in warmer weather and/or when less people are taken. During an emergency, the power requirements can amount to 8 kW, while more than 24 kWh of energy can be needed in just three hours.
Hydrogenerators
How to produce this power? Solar panels and wind turbines are only a small part of the solution. Producing 50 kWh of energy per day would require at least 100 square metres of solar panels, for which there is little space on a 60 m long sailing ship. Vulnerability and shading by the sails make for further problems. Wind turbines can be attached in the rigging, but their power output is also limited. The low potential of solar and wind power are demonstrated by the earlier mentioned sailing ship Avontuur. She has a 20 kW generator, powered by the diesel engine, but only 2.1 kW of solar panels and 0.8 kW of wind turbines.
The hydrogenerator is the only renewable power source that can provide a large sailing ship with enough energy for the use of modern technology on board. Hydrogenerators are attached underneath the hull and work in the opposite way as a ship’s propeller. Instead of the propeller powering the ship, the ship powers the propeller, which turns a generator that produces electricity. In spite of its name and appearance, the hydrogenerator is actually a form of wind energy: the sails power the propellers. Obviously, this only works when the ship is sailing fast enough.
Furling sail on the main yard of the Parma. Alan Villiers, 1932-33.
The EcoClipper500 will be equipped with two large hydrogenerators, for which Simons calculated the power output at different speeds, taking into account the fact that the extra drag they produce slows down the ship somewhat. He concludes that the EcoClipper500 needs to sail at a speed of at least 7.5 knots to generate enough electricity. At that speed, the hydrogenerators produce an estimated 2,000 watts of power, which converts to roughly 50 kWh of electricity per day (24 hours of sailing).
At a lower speed of 4.75 knots, the generators produce 350 watts, which comes down to 8.4 kWh of energy over a period of 24 hours – only 1/6th of the maximum required energy. On the other hand, at higher speeds, the hydrogenerators produce more energy than necessary. At a speed of almost 10 knots they provide 120 kWh/day, at a speed of 12 knots this becomes 182 kWh/day – 3.5 times more than needed.
Saltwater batteries
According to her hull speed, the EcoClipper500 will be able to sail a little over 16 knots at absolute top speed – this is double the minimum speed required to generate enough power. Achieving this speed will be rare, because it needs calm seas and strong winds from the right direction. Nevertheless, in good wind conditions, the ship easily sails fast enough to produce all electricity for use on board.
Good wind conditions can last for days, especially on the oceans, where winds are more powerful and predictable than on land. However, they are not guaranteed, and the ship will also sail at lower speeds, or find herself in becalmed conditions – when hydrogenerators are as useless as solar panels in the middle of the night.
Because she has no engine, the EcoClipper500 faces a double problem when there’s no wind: she cannot continue her voyage, and she has no energy to maintain life on board. The first problem is easily solved but the second is not. Life on board goes on, and so there is a continued need for power. To provide this, the ship needs energy storage.
To cover the needs for three days drifting in cold weather, an energy storage of 150 kWh would be required, not taking into account charge and discharge losses. Five or seven days of energy use on-board would require 250 to 350 kWh of storage. For emergency use, another 25 kWh of energy storage is needed.
Scraping the deck onboard the ‘Parma’. Alan Villiers, 1932-33.
Not having an engine, generator and fuel tank saves space on board, but this advantage can be quickly lost again when one starts to add batteries for the hydrogenerators. Lithium-ion batteries are very compact, but they cannot be considered sustainable and bring safety risks. That’s why Jorne Langelaan and Andrew Simons see more potential in – very aptly – saltwater batteries, which are non-flammable, non-toxic, easy to recycle, have wide temperature-tolerance, and can last for more than 15 years. Like the biodigester, they have never been used on a sailing ship before.
Unlike lithium-ion batteries, saltwater batteries are large and heavy. At 60 kg per kWh of storage capacity, a 150 kWh battery storage would add a weight of 9 tonnes, while a 350 kWh storage capacity would add 21 tonnes. Still, this compares favourably to the total cargo capacity (500 tonnes), and the batteries can serve as ballast if they are placed in the lower part of the ship’s hull. The space requirements are not too problematic, either. Even a 350 kWh energy storage only requires 14 to 29m3 of space, which is small compared to the 880m3 of cargo volume.
The emissions that are produced by the manufacturing of the hydrogenerators, biodigester, and batteries are not included in the life cycle analysis of the ship, because there are no data available. However, these emissions must be relatively small. Hydrogenerators have much higher power density than wind turbines, and thus a relatively low embodied energy. A quick back-of-the-envelope calculation learns that the carbon footprint of 350 kWh saltwater batteries is around 70 tonnes of CO2. [7]
Human Power
There’s another renewable power source and energy storage on board of the EcoClipper, and that’s the humans themselves. Like the pellet stove and the biodigester, the use of human power could reduce the need for electricity. Nowadays, cargo ships and most large sailing ships have electric or hydraulic winches, pumps, and steering gear, saving manual labour at the expense of higher energy use. In contrast, EcoClipper sticks to manual handling of the ship as much as possible.
Crew at the capstan of the Parma, weighing anchor. Alan Villiers, 1932-33.
Simons and Langelaan are also considering the addition of a few rowing machines, coupled to generators, to produce emergency power. Two rowing machines could provide roughly 400 watts of power. If they are operated around the clock in shifts, they could supply the ship with an extra 9.6 kWh of energy per day (ignoring energy losses) – one fifth of the total maximum electricity use.
In fact, as I tell Simons and Langelaan ten rowing machines operated continually in shifts would provide as much power as the hydrogenerators at a speed of 7.5 knots. If there are 60 people on board, and everybody would generate power for less than one hour per day, no hydrogenerators and batteries would be needed at all. “A very interesting thought”, answers Simons, “but what impression would we be painted with?”
Hot Showers?
Even with a biodigester, hydrogenerators, batteries, and rowing machines, the passengers and crew on board the EcoClipper500 would be far short of luxurious, and perhaps too short of comfortable for some. For example, if 60 people on board the ship would take a daily hot shower – which requires on average 2.1 kilowatt-hours of energy and 76.5 litres of water on land – total electricity use per day would be 126 kWh, more than double the energy the ship produces at a speed of 7.5 knots.
The ship could supply this energy at a higher sailing speed, but there would also be a need for 4,590 liters of water per day, a quantity that could only be produced from seawater – a process that requires a lot of energy. Even a crew of 12 taking a daily hot shower would require 25.2 kWh of energy per day, half of what the hydrogenerators produce at a sailing speed of 7.5 knots. The Bark Europa is the only sailing ship mentioned in this article that has hot showers in every (shared) cabin, but it is also the ship with the biggest generators and the highest fuel use.
On the forecastle head of the Parma in fine weather. Image by Alan Villiers, 1932.
Andrew Simons: “On the EcoClipper500 there needs to be a manageable compromise between energy use and comfort. Energy use on board will have to be actively managed. Resources are finite, just like for the planet. In many ways the ship is a microcosm of challenges that the wider world has to face and find solutions to.”
Jorne Langelaan: “At sea you are in a different world. It doesn’t matter anymore if you can take a daily shower or not. What matters are the people, the movements of the ship, and the vast wilderness of ocean around you”.
Measuring the right things
This article has compared the EcoClipper500 sailing ship with the average container ship, bulk carrier, and airplane in terms of emissions per tonne- or passenger-kilometer. However, these values are abstractions that obscure much more important information: the total emissions that are produced by all passengers and all cargo, over all kilometres.
The international ocean freight trade increased from 4 billion tonnes of cargo in 1990 to 11.2 billion tonnes in 2019, resulting in more than 1 billion tonnes of emissions. International air passenger numbers grew from 1 billion in 1990 to 4.5 billion in 2019, resulting in 915 million tonnes of emissions. Consequently, lowering the emissions per tonne- and passenger-kilometre is neither a necessity nor a guarantee for a reduction in emissions.
If we cut international cargo traffic more than fivefold, and passenger traffic more than tenfold, then the emissions of all container ships and airplanes would be lower than the emissions of all sailing ships carrying 11.2 billion tonnes of cargo and 4.5 billion of passengers. Vice versa, if we switch to sailing ships, but keep on transporting more and more cargo and passengers across the planet, we will eventually produce just as much in emissions as we do today with fossil fuel powered transportation.
The mizzen of the ‘Grace Harwar’; view aft from the main crosstrees. Alan Villiers, 1932-33.
Of course, none of this would ever happen. The amount of cargo that was traded across the oceans in 2019 equals the freight capacity of 22.4 million EcoClippers. Assuming the EcoClipper500 can make 2-3 trips per year, we would need to build and operate at least 7.5 million ships, with a total crew of at least 90 million people. Those ships could only take 0.5 billion passengers (12 passengers and 8 trainees per ship), so we would need millions of ships and crew members more to replace international air traffic.
We should not be fooled by abstract relative measurements, which only serve to keep the focus on growth and efficiency.
All of this is technically possible, and as we have seen, it would produce less in emissions than the present alternatives. However, it’s more likely that a switch to sailing ships is accompanied by a decrease in cargo and passenger traffic, and this has everything to do with scale and speed. A lot of freight and passengers would not be travelling if it were not for the high speeds and low costs of today’s airplanes and container ships.
It would make little sense to transport iPhones parts, Amazon wares, sweatshop clothes, or city trippers with sailing ships. A sailing ship is more than a technical means of transportation: it implies another view on consumption, production, time, space, leisure, and travel. For example, a lot of freight now travels in different directions for each next processing stage before it is delivered as a final product. In contrast, all sail cargo companies mentioned in this article only take cargo that cannot be produced locally, and which is one trip from producer to consumer. [8]
This also means that even if sailing ships have diesel engines on board, they would still bring a significant decrease in the total emissions for freight and passenger traffic, simply because they would reduce the absolute number of passengers, cargo, and kilometers. We should not be fooled by abstract relative measurements, which only serve to keep the focus on growth and efficiency.
Notes
[1] Between 1978 and 2004, the Avontuur was operated as sail cargo vessel under Captain Paul Wahlen. The Apollonia, originally built in 1946, is another cargo sailing ship in operation since 2014. It is 19.5 metres long and carries 10 tonnes of cargo.
[2] Very recently, Grain de Sail was buillt and launched for Trans-Atlantic shipping of wine and cocoa. She is a modern sailing ship without an engine, built from aluminium, and can take 35 tonnes of cargo.
[3] Andrew Simons: “There are plenty historical sailing ships, but either very costly to get into service as a regulatory compliant cargo vessel, because they are still used for other purposes, or not suitable.”
[4] Unfortunately the envelope got lost.
[5] In the case of the EcoClipper, most of the emissions are produced during the construction of the ship, while in the case of bulk carriers and container ships, they are mainly produced during operation and fuel production.
[6] The largest container ships now take 190,000 tonnes of cargo.
[7] There is not much data available on saltwater batteries, but they are less energy-intensive to build than many other types of batteries. The calculation is based on an estimate of 66 kg CO2/kWh of storage capacity and three generations of batteries over a period of 50 years.
[8] Almost one third of all cargo transported are fossil fuels themselves.
[9] The study can be downloaded when you subscribe to EcoClipper’s newsletter. The research is based on a typical life cycle analysis, but note that this is not a peer reviewed study.
The Hudson River Maritime Museum, in cooperation with the Center for Post Carbon Logistics and the Northeast Grainshed Alliance, will be conducting a Grain Race in May of 2022. Contestants in four capacity categories will vie for the highest score when moving cargoes of grain from growers to producers and users such as brewers and maltsters across New England, New York, and New Jersey. Each Ton-Mile of cargo moved earns one point, but 5 points are lost for each liter of fuel, or 10 kWh of power taken from the grid.
Based on the Great Grain and Tea Races of the 19th century, conducted by ships sailing from Australia and China to England, but adapted to facing the current climate crisis, this race is designed to add some drama and interest to the topics of local food systems and food transportation.
Each contestant set can enter a single cargo voyage during the month of May 2022, using the indicated Google Form, which will be verified by a panel of judges. Winners will be published on the 15th of June, and prizes awarded thereafter.
The rules and current Directory of Participants and Supporting Organizations can be accessed here. Those interested in participating can have themselves added to the directory through the provided contact link in the document, while those with questions can contact the Hudson River Maritime Museum for further information.
Blog Post
The Northeast Grain Race is many things, a history lesson, an “all things considered” invitation, a competition and an opportunity to make a difference but it also highlights another race – a race against time. The world urgently needs initiatives like this to make us sit up and take a good look at what we all take for granted – the food in our local store and how it gets there. To put it bluntly, we must find better ways to put food on the table without destroying the farms that grow it, and recent disasters are surely stark reminders that we’re rapidly running out of time. The good news is this is a race we can win, we can come out on top if we apply ourselves to this, The Race Of Our Lives. In our marine team, we have access to the best of history, the best technology and the combined expertise of the best Maritime Minds and Lateral Thinkers so the odds are good – we can win this one!
This race could herald a new era as the seeds of a new ocean order come to fruition – history will be written. ) we are evolving to a point where we will wield real power. Power to initiate sensible change as we jointly reject the old obsolete ways of the past and embrace the new ways of the past – the abundant natural capital of wind and sun re-interpreted for the 21st century.
The power to commission a new generation of better cargo ships, clean, efficient and profitable ships driven by wind and sun, is within our grasp. Our time is now.
As an Australian member of this group of visionary minds, my own contribution is both modest yet my aims are global. The principles are simple – take the best of the old and press a big refresh button. Our small sailing ketches and cargo schooners would not, at first glance, look out of place moored to a 19th century wharf, but look closer and you will see that every single component of every one of our boats is upgraded. We’ll refine the time-honoured sailplans, upgrade all the gear and build in electric auxiliaries. A new generation of sailmakers will weave their composite spells, new alloys like Scandium will be extruded for our spars and our underwater lines will cleave the waters with no oily scum in their wake.
Every aspect of the power delivery systems is designed for efficiency. Form Energy’s new generation iron-air batteries show great promise as ballast with benefits, new pumps and fridge compressors will cut power consumption by half – Magtor take a bow, and hats off to the Alpha 311 creators for their innovative roadside wind generators, we have designated spaces for them on board. There’s high-performance, self-lubricating bearings for props, rudders and dagger boards. All this and up to 36 TEUs in the holds, that’s 800 tonnes or 1,400 cubic metres (49,440 cubic feet) in our new Schooner. Food on the table without trashing the trade routes.
Our new wind ships are freighters, feeders and short sea traders with a good attitude, not afraid to exploit the best of the new but built on the solid, risk-averse foundations of the world’s maritime history, a history with a particularly rich vein running right through the North Eastern States
This business model only takes us so far however, you are not going to power a full-sized container ship with solar panels over the cargo hatches but our C100 Ketch will generate 12kW on a good day and power the inboard electric engines in the calms to help keep the owner’s accountant happy. And there’s the business case in a nutshell – free fuel, there for the harnessing. I’ll gladly leave the development of the mega ships to those best qualified for the job but America and indeed the whole planet will always need small ships, new generation zero-carbon square riggers for the trade winds and new schooners, sailing barges and cutters for the rivers, estuaries and islands.
So what’s the big idea then? Where do we go from here?
Back to future I say, and I take my cue from the amazing World War 2 Liberty Ship program initiated by good old-fashioned US entrepreneurs and an enlightened government applying Henry Ford’s mass-production techniques to the slipways. The current war threatens annihilation so we’d better get down to it. We need mass-produced sail and sun driven ships by the thousand. We will need the discipline and strategy of the military, the precision of robotics and the hard work of the Nation’s best shipwrights and we need them now.
So what’s stopping us? Capital. Where there’s a will there’s a way and we have the will already. We need to pool our abundant resources, take a collective deep breath and speak up – loud and clear. It’s no longer a case of “THEY SHOULD DO SOMETHING!” Protest is past, action is present, WE will do something, our voices must ring out in the boardrooms of the powerful. The message is crystal clear, free fuel can no longer be ignored and the starting gun for the future-proof shipping race has already been fired – the winds of change are here!
The author:
Derek Ellard is an Australian boat builder and designer at Go Sail Cargo. He has designed “purpose built” “electric clipper” sail cargo vessels ranging in size from 24’ to 180’. Derek has been working with the Center for Post Carbon Logistics, The Schooner Apollonia, the Hudson River Maritime Museum, and Sustainable Hudson Valley as part of an effort to R&D. design, finance, and build 5 new ships including an ocean-going sail cargo vessel to be locally built in a Hudson Valley shipyard to complement the movement of goods and people to and from the Caribbean, New York Harbor, and the Hudson Valley in a carbon constrained future. Derek can be reached at derek@scruffie.com.
A Blog Post by Steven Woods. Mr. Woods earned his master’s degree in Resilient and Sustainable Communities at Prescott College in 2021, with an undergraduate degree in History from LeMoyne College. He has worked in museums for over 20 years and is making a career transition to the sustainability field after 6 years in the US Airforce. He is presently the Solaris Coordinator at the Hudson River Maritime Museum.
I’m willing to bet a lot of people clicked this article thinking something along the lines of “How about ‘Towards Hiring A Proofreader, Eh?!’” Despite this, the title is accurate: The Food Movement lacks any real vision of how food will move in future from the farm gate to the citizen’s fridge. I am very much talking about a social movement concerned with the physical movement of food.
We could also call such a movement by other names: “Tucker Transit To-Do,” “Respect For Refreshment Relocation,” “Comestible Conduct Concern,” “Victual Voyage Verification,” and “The Food Flow Front” were all suggested to friends before I was summarily kicked out of their house. While “Whence The Vittles?!” was a personal favorite, it seems these are mostly just good ways to make enemies and alienate people while not getting your point across in a helpful way. Thus, we are left with the boring but utilitarian name of The Food Movement Movement.
There are a lot of studies out there about regional food self sufficiency, some dating from the 19th century, and others from just a few years ago. The topic of food sovereignty has been a matter of debate since the 17th century, and usually comes to the fore during and after armed conflicts and other crises which might result in embargos or other interruptions to the food supply, such as Brexit quite recently. Agriculture and food security have long been considered matters of national security and tools of foreign policy, and in war many blockades specifically target food movement into and within enemy nations as a way of inflicting losses and destroying the enemy’s will to continue the conflict..
Far fewer studies actually touch upon how food is supposed to move between its points of origin and consumption within a peacetime food system model. Even fewer touch upon how this can be done at the necessary scale in a post-carbon future.
How food was, is, or will need to be carried over land and sea through the use of self-propelled vehicles, trailers, barges, carts, pack animals, ships, or human powered systems such as bicycles is chronically under studied. A great historical study of this overlooked element of food systems is Walter Hedden’s book “How great cities are fed” from 1929. Without this transportation, food goes to waste and people starve. It is simply impossible for New Englanders to eat food which is sitting in crates on a Texas, Florida, Kansas, or California farm table for lack of transportation capacity. As a result, it is difficult to overcomplicate or underestimate the impact of insufficient transport capabilities on any socio-alimentary system.
New York City Foodshed
With a carbon-constrained future rapidly approaching and demanding significant changes to transportation habits, this issue is of paramount importance. Unfortunately, it is routinely ignored in food system visions, which are normally published without direct and detailed attention to the distance and means by which food will be transported. Take New England, for example: A New England Food Vision by Food Solutions New England hopes to expand agriculture so half of New England’s food is produced within the region by 2060. While laudable and achievable, this publication doesn’t tell us how literally tens of thousands of tons of food per day will arrive in New England from elsewhere, all year round. The study simply assumes there are sufficient transport resources which are independent of petroleum fuel supplies, will not raise the cost of imported food beyond the reach of citizens, and doesn’t rely on similarly vulnerable, scarce, and unpredictable renewable electricity sources. It also expects petroleum-based paved infrastructure, tires, and other supplies underpinning our current transportation system to continue existing in sufficiently decent condition to carry these millions of daily ton-miles across the region and the continent.
None of this should be taken for granted, but it is easy to understand why it is forgotten in our current economy and era of easy access to energy. With cheap fossil fuels, low shipping costs, and a probably misplaced faith in miracle technologies, we as a culture and a nation have a tendency to get carried away with the thought of our current transport system existing forever. It is honestly difficult to imagine anything else, even when you put your mind to it.
Large Sail Freight Vessel
So, the need clearly exists for a Food Movement Movement. But how would it operate? What vehicle could possibly provide New England’s massive import requirements with oil- and electricity-independent, renewable, reliable, and emissions-free transportation without the need for paved infrastructure? The answer isn’t terribly difficult to find for those who have studied the region’s history: Sailing Vessels.
Visit any one of the dozens of Maritime Museums in New England, and you can see there is plenty of tradition, knowledge, and capacity to supply New England’s food imports by sail freight. By my calculations (Pages 74-78 Here), a mere 3,000 ships and 18,000 sailors would be able to meet this demand with room to spare for a small amount of delays, time off, and some commodities I hadn’t included in the original math. This is with small vessels, too: A ship of only 111.5 tons cargo capacity, with a crew of 6.5 sailors was used as the rule.
Sail Training Vessel with Cadets
It is eminently possible to build, launch, and crew these vessels over the next 40 years, while creating tens of thousands of jobs. It is also more than possible to use existing training infrastructure from organizations such as Tall Ships America, US Sailing, and The American Sailing Association to ensure a sufficient pool of skilled windjammer sailors are at hand to take them over the seas.
This fleet only supplies the import needs of New England. The Coastal Trade in New England is prime territory for exploitation by enterprising Yankee Sailors, due to the historical settlement patterns of the region. Dozens of small ports and harbors can become points of carbon free shipping within the region, as was seen with the Vermont Sail Freight Project and Maine Sail Freight. These projects have shown the way to a Slow Food Movement Movement, though some brokerages and other infrastructure will need to be built to support this type of transportation. This type of business pattern change is a minor thing in all reality, and can be accomplished if we set some Yankee determination and ingenuity to work on it.
Tres Hombres Sail Freight Vessel
Far larger areas than just New England can be served by Sail Freight: Cities and towns along all four of the USA’s coastlines (Atlantic, Pacific, Gulf of Mexico, and Great Lakes) can benefit from Sail Freight, as can the massive regions of the midwest served by our over 12,000 miles of inland waterways. As with any other such infrastructure, ports, harbors, anchorages, channels, locks, dams, sluces, dry docks, weirs, inclined planes, and shipyards must be maintained every year, fully funded, and cared for. However, unlike other infrastructure investments, they are long term, lasting up to or in excess of 50 years for locks, and support carbon free shipping in the place of resource-intensive gas, diesel, and electric powered vehicles.
As we think of Slow Food, we should keep in mind the importance of moving that food around the block and around the world as sustainably as it was grown. With a bit of planning, civic involvement, prudence, and forethought, far more than just the slow food movement can benefit from the slow movement of food.
This article is a summary of the Steven Woods’ Master’s Thesis: “Sail Freight Revival: Methods of calculating fleet, cargo, and labor needs for supplying cities by sail.” Master’s Thesis. Prescott College, 2021. The full thesis can be read Here.
Solar Electric USCG Inspected passenger vessel Solaris
Steven Woods earned his master’s degree in Resilient and Sustainable Communities at Prescott College in 2021, with an undergraduate degree in History from LeMoyne College. He has worked in museums for over 20 years and is making a career transition to the sustainability field after 6 years in the US Airforce. He is presently the Solaris Coordinator at the Hudson River Maritime Museum.
Ssil Freight Schooner Apollonia
Sail Freight is an ancient, proven, and fuel-independent means of transportation for both cargo and people. At scale, it could easily provide a means of provisioning cities across the world with food and other essential goods, while avoiding the use of strategic materials such as lithium, cobalt, biofuels, solar panels, electricity, and copper which are needed for the land-based energy transition. The challenge of moving to a sustainable transportation system is of critical importance, and the need to maintain a sufficient transportation capacity for food is literally a matter of life and death.
Sail Freight Vessel Tres Hombres
Sail Freight has gained popularity and visibility as a means of near zero carbon transport, and justifiably so. As complex Sail Freight networks have existed for at least 4,000 years in the Mediterranean, and possibly as long as 40,000 years in the South Pacific, the art of sailing is not new, and does not require complex or energy intensive technologies. Once a sail freight vessel is launched, the carbon emissions from the vessel are nearly zero, and service lives can cover several decades. As 90% of the world’s commerce moves by sea, and modern container ships normally burn over 100 tons of heavy fuel oil per day on their voyages, sail freight seems a good means of cleaning up global commerce.
Until recently, it seems no one has examined the scale at which sail freight must be adopted to fulfill these hopes and aspirations, nor has anyone looked at the auxiliary challenges of adopting sail freight, such as the capacity available to train windjammer sailors, build ships, and so on. Other challenges arise simultaneously to fleet capacity: Food systems and diets must change, warehouses be revived and staffed, superfluous shipping avoided, and foodsheds altered, while regulations change and physical infrastructure needs to be modified. Without a systems view of the whole readoption of sailing freight; any discussion thereof is unlikely to grasp the magnitude of the task at hand.
Black Seal unloading in Brooklyn
The first step in such a process is establishing a level of supply needed in a given city, which in our case with be the New York Metro Area. To survive, the city must have 2.5 kilograms of food per person daily. With a population of some 20,000,000 people, the New York Metro Area needs 50,000 metric tons of food per day, at a minimum, to prevent starvation. This gives us our daily requirement but does not give the full picture. A representative model of the NYMA Foodshed must be established, and the travel times from the food’s origin to destination must be calculated, alongside time for loading and unloading, as well as time for the ship to return to the origin for its next cargo.
The table below gives one such model for the New York Metro Area, at two levels of supply, using relatively small vessels, and illustrates the challenge before us quite well.
As can be seen, even at the lowest possible level of supply, it would require nearly 10,000 ships and 65,000 sailors to supply New York with food, and this without allowing time for crew rest, delays, or ship maintenance. At our current pace of launching Sail Freight Vessels, it would take near 44,500 years to build such a fleet. If we put all the shipyards in the US to work on the problem, however, it could be accomplished in as little as 13 years. While this feat would only be a start, as other cities will need their own fleets, these figures show the scale of the problem we are confronted with, and that it can in fact be solved quickly and effectively.
Of course, ships without trained crews are useless. The time to train windjammer sailors must also be considered. With an average program able to train around 650 sailors in a given year, the number of training program years needed to train the NYMA fleet’s crew requirement would be some 100 years, though with 8 such programs running concurrently this could also be accomplished in less than 15 years. The chart below shows the relationship between training program years and shipyard years and demonstrates that training a sufficient number of sailors will likely take longer than the construction of a sufficient number of vessels for the mission at hand.
sail training vessel
These figures all rely on a “Survey Average Vessel” of 111.25 tons capacity, and 6.5 crew members on average. These would be relatively small vessels, and larger vessels will need fewer of both ships and crew to give the same Fleet Tonnage. It is likely in the beginning of sail freight’s revival that small vessels will be involved, both reclaimed and newly built, which will have larger crew requirements and lower tonnages than the model here portrays. It is worth taking a comprehensive look at the current sail training resources in the US and subsidizing the training of windjammer sailors and captains as soon as practicable.
In the case of Sail Freight, fuel or energy efficiency is not applicable in the same way as with conventional transportation. The appropriate metric of efficiency is “Tons Per Sailor” as the major cost is labor. The higher the tons per sailor, the lower the cost of moving cargo becomes, and the large the vessel, the greater the tons per sailor. Further, this metric is effected by rig, as seen below.
Sloops and Scchooners fore and aft rigs
Through the intelligent choice of rig for specific applications, crew requirements can be brought down somewhat as larger vessels proliferate. Fore-and-Aft rigged vessels such as sloops, schooners, and brigantines generally have a smaller crew and are well suited to the coastal trading which will likely constitute much of a sail freight food movement system. Barks, Ships, and very large schooners will also likely see use on longer routes with far more cargo, but moderately sized crews.
Other challenges are present for reviving sail freight. Without substantial changes bringing the external costs of road and fossil fueled transport into the economic equations through weight-distance, tire, fuel, and carbon taxes, sail freight will remain economically uncompetitive excepting on very long routes with high-value cargos. As the price of fossil fueled transport rises, this competitiveness will even out, and short sea shipping under sail will most likely gain traction in the economic mix.
truck pollution
There are significant benefits to moving to sail freight for climate policy which makes the case for its adoption despite these challenges. It has been calculated that at a minimum, more than 220,000 tons of CO2e could be eliminated from US transportation emissions through supplying the NYMA with food via Sail Freight. This model assumes that all food is brought via 10,000 TEU container ships, which can move some 380 ton-miles on a liter of diesel fuel. Trucking, by comparison, nets only 1.58, while trains can get up to about 118-ton miles per liter of diesel fuel. If the latter number was calculated for trucking emissions instead of conventional maritime transport, it would be some 21 billion liters of diesel fuel and 63,560,087,101 Tons of CO2e avoided annually. This amounts to some 362,000 barrels of oil per day.
pollution from ships
Alongside these benefits, shifting cargo to waterways will reduce congestion, wear, and tear on highway and rail systems, thus likely increasing the overall fuel efficiency of these same systems. Biofuels made from food wastes will be freed for use in supplying cities without nearby port facilities and demands on the grid for electrical power to fuel electric trucks will be lessened. In addition, the number of electric trucks to be built will also decline, making electrification faster and simpler in the long run.
Vermont Sail Freight Ceres
There are other advantages to Sail Freight which are less obvious than the environmental benefits and the challenge of training crews and building ships. For example, small vessels can be built inexpensively and with little needed in the way of facilities. Small ships can be built in the tradition of the Farmer’s Ships of the Aland Islands, which was effectively a combination of bot community supported agriculture and community supported shipping. Ceres of the Vermont Sail Freight Project is an example of just such a vessel, which made several successful voyages from Lake Champlain to New York City for the mere cost of some $20,000. With more advanced designs becoming available, planned for mass production and low cost in the style of the liberty ships of World War Two, these higher-capital ships will be in financial reach of cooperatives all around the four coastlines of the US and abroad.
Schooner Apollonia
This more democratic ownership model for transport, independent of fossil fuels, removes major costs for farmers in rural areas, especially as the cost of fuel and trucking rises. This can have the effect of lowering or stabilizing food prices for citizens while keeping more money moving to farmers and sailors. This is of mutual benefit to both city and countryside, clearly, but also reduces the power of banks and major corporations in both the transportation and food systems.
NYC Foodshed
Despite these benefits, there are many social and cultural adaptations which must be made to adapt to a Sail Freight future. The idea of constantly having fresh produce, in the off-season from 3,000 and more miles away will have to be abandoned. Diets must become more regionalized and localized, and the use of preserved foods instead of fresh in agricultural off seasons will become the rule. With innovative growing techniques, green houses, and other adaptations, there are likely to be small supplies of fresh foods in off seasons, but New York is unlikely to have shiploads of citrus arrive in good condition from Tampa after over a week in transit. Citrus juices, jams, preserves, and other shelf-stable confections will have to take the place of these foods where possible, and processing happen near the point of origin.
Next-day delivery will be impossible, and Just-In-Time delivery systems will be a thing of the past, replaced by acres of warehousing. wastes reduced, and material goods designed for repair instead of disposal. Superfluous Single-Use items such as coffee cups, plates, flatware, and bags should be banned on both environmental and logistical grounds. If every member of the NYMA used a single disposable coffee cup weighing 18 grams per day, the mass of cargo would amount to over 360 tons daily, or 131,400 tons of cargo in the year. If manufactured in Shanghai, 368 Survey Average Ships would need to be in constant motion between the two ports to maintain this entirely unnecessary practice.
Sail Freight Vessel Tres Hombres
Neoline Sail Freight
The future of Sail Freight is promising. Through the combination of modern knowledge and technology with proven older forms, a sustainable way of keeping cities alive can be created. While the challenge of building a Sail Freight future is certainly not easy, it can be done if we put our money, our time, and our backs to the task at hand. So doing could significantly alter the course of climate adaptations and climate change mitigation, provide hundreds of thousands of jobs, and democratize the economy in many beneficial ways. Given the gravity of our situation and the benefits to be gained, the case for Sail Freight should be clear to all.
Wellbeing Farm will explore an array of innovative heritage and leading-edge technologies by which individuals, communities, and the Hudson Valley Bioregion can thrive in decades ahead – designing and realizing pragmatic, environmentally and economically sound tools for peacefully, equitably, and intelligently transitioning away from fossil fuels.
Imagine a place here in the Hudson Valley where skilled craftspeople, technicians and visionaries travel back in time to harvest the best, most energy efficient and practical technologies of bygone eras, then retool and repurpose those technologies to meet the challenges of our Post Carbon Future.
Wellbeing Farm is that place, and the time for its genesis — here among our forested hills and in our fertile river valley — is now.
Located in the heart of the Hudson Valley Bioregion, Wellbeing Farm will be a working farm with access to a river port, that will engender the Valley’s can-do spirit, harness our region’s inventiveness and our love of innovation, allowing our region and its people to not merely survive in the Post Carbon era, but thrive. And why not? After all, our region gave the world the steamboat, the telegraph, the submarine, FM radio, the first interactive software systems vital to today’s computers, and even potato chips. We seem born to invent the future!
Wellbeing Farm will be located on one large site or multiple locations in the Mid-Hudson Valley — a real place, or a scattering of several organizationally linked places — that will address the entwined themes of education, food production, alternative energy production, health and wellness, and the equitable distribution of knowledge, facilitating the transfer of an abundance of innovative traditional processes, technologies, and products to the local community.
Wellbeing will be an “invention factory” of an entirely new and surprising sort. The source of its inspiration and empowerment will be our region’s earth and waters, its hands, and minds. Here the best and brightest urban and rural, “Slow” technologists, craftspeople, educators, artists, schoolchildren, seniors, can come together to remake our post-modern world. Here they’ll find new, efficient, green ways to produce energy; revolutionize agriculture to assure food security in an increasingly unstable world; reinvent transportation on land and water to move goods up and down our valley and beyond. Here they’ll help birth a new inclusive regional economy that rewards all citizens, while celebrating democracy, cooperation, and public service.
On the farm, every day, diverse participants — Transition and Permaculture practitioners, farmers, wranglers, post and beam builders and boat builders, commercial fishermen, millwrights, engineers, potters, weavers, woodworkers, writers, historians, archivists, computer and IT experts, and people from wildly diverse vocations — will merge and meld their talents.
Here, they’ll move via hands-on experiences beyond spin and abstract buzzwords – past “environmental”, or “sustainable”, or “eco” this or that. Here, our work will focus on a Just Transition away from fossil fuels, giving new meaning to the word farmhand, as all join together to create the naturally viable means for living and being in community in the 21st Century — as we prosper economically, emotionally, and spiritually, beyond the realm of coal and oil.
Wellbeing Farm will be a center for Permaculture, the crafts of Transition, and for re-skilling. It will be a showplace, offering living demonstrations of the efficacy of local food and energy production, a place where practitioners will be given the time and space to develop and implement solutions intended to move the world away from an extraction and unlimited growth paradigm; toward a sustainable, steady-state economy that benefits the local community, its small businesses and residents.
Most of all, Wellbeing Farm will be a place to dream, and realize those dreams, a place to be nurtured by our heritage, to experiment and boldly face the challenges of a post-pandemic, post carbon, human community — a place to grow crops, breed livestock, construct new buildings and boats, and an empowered future for the Hudson Valley Bioregion.
WELLBEING FARM
Permaculture Design System Evolution
A place to explore Transition, Re-skilling, Permaculture, and Slow Tech, while meeting the challenges of our Post-Carbon Future.
Wellbeing is defined as a “happy, healthy, or prosperous state.” Wellbeing Farm, therefore, will be a physical place where the principles of wellbeing in a post-carbon age are practiced, where Permaculture (an approach to designing human settlements and agricultural systems reflecting and conserving the natural world), and Transition (where those same principles, as well as other innovative approaches), are applied to solving the dual challenges of climate change and peak oil within the Hudson Valley Bioregion.
The necessity for establishing Wellbeing Farm first occurred to me and others in 2013 at the Mid-Atlantic Transition Hub Waterways Reskilling Gathering, when it became clear that those who attended and presented – Transition and Permaculture practitioners, farmers, millwrights, boat builders, post and beam barn and mill restorers, commercial fishermen, engineers, potters, weavers, and woodworkers — all needed a physical location and community center, a place to be, gather, hold workshops, teach classes, congregate, train apprentices, share stories, and create real world solutions to achieve an urgent Transition into the post-carbon Appropriate/Slow Tech era.. Slow Tech urges a thoughtful, empowering, nature-based process, utilizing a variety of scaled down tools with which to reshape human relationships, conserving time, energy, and our bioregional home.
Well Being Farm will address the entwined themes of education, food production and alternative energy production, health and wellness, and the equitable distribution of knowledge, along with the transfer of an abundance of innovative traditional processes and products to the local community.
Wellbeing Farm will be a physical place, located in the heart of the Hudson Valley Bioregion, where participants can move, by means of, hands-on experiences beyond abstract buzzwords – past “environmental,” or “sustainable, or “eco” this or that. Here, their work will focus on a Just Transition, giving everyone the tools needed to create the naturally viable means for living and being in community every day, on into a positive future — as we prosper economically, emotionally, and spiritually, beyond the realm of coal and oil.
WellbeingFarm won’t only teach pragmatics skills and livelihoods; it will be a living laboratory in which participants take part in designing Transition – where teachers and learners join in a collective adventure and commit to a common journey, originating pathways that lead beyond fossil fuels, helping people feel not like cogs in a faceless corporate gear, but like active, vital, creative individuals involved in the important work of revolutionary societal transformation.
Wellbeing Farm will be a center for Permaculture, the crafts of Transition, and for re-skilling to meet the challenges of a post-carbon world. The Farm will be a showplace, offering living demonstrations of the efficacy of local food and energy production, a place where practitioners will be given the time and space to develop and implement solutions intended to move the world away from an extraction and unlimited growth paradigm; toward a sustainable, steady-state economy that benefits the local community, its small businesses and residents.
Wellbeing Farm; the basics:
TheFarm will be centrally located in the Hudson River Bioregion.
Wellbeing Farm will house the headquarters of The Center for Post Carbon Logistics, the Hudson Valley Resilience Hub, and the Bioregional Traditional Knowledge Database and Library – offering these institutions one central place where colleagues can share expertise, experiences, stories, electronic and physical resources. Wellbeing Farm will serve as a “living library,” gathering and protecting historical knowledge, while exploring and promoting innovative sustainable solutions based in traditional crafts and skills.
The farm will regularly host the annual Hudson Valley Common Ground Country Fair, Chautauquas, and other bioregional celebrations.
Wellbeing Farm Mission
Wellbeing Farm will explore an array of innovative heritage and leading-edge technologies by which individuals, communities, and the Hudson Valley Bioregion can thrive in decades ahead – designing and realizing pragmatic, environmentally and economically sound tools for peacefully, equitably, and intelligently transitioning away from fossil fuels.
Wellbeing Farm will serve as an empowering example – demonstrating ethical livelihoods and teaching beneficial technologies that do minimal socio-environmental harm; methodologies that foster self-reliance and promote Slow Tech via hands-on practices, as professionals and students gather regularly from across our bioregion on a farmstead like no other in our region: a living laboratory cultivating not only resilient food production methods and energy and transportation solutions, but fresh, pathfinding ideas as well.
The Farm will take its essential lessons from nature, incorporating the values of earth stewardship, community cooperation, and individual initiative, while emphasizing the sharing of surplus, teaching that our actions have consequences, that we all have vital responsibilities, and ultimately fostering care and love for the environment, society and for each other.
The Power of Just Doing Stuff
Wellbeing Farm will teach traditional skills and re-skilling for a post-carbon world. It will house Permaculture demonstration projects; alternative energy and water conservation pilot projects; and a plethora of innovative educational activities offered up within beautiful, peaceful, productive, energy-efficient spaces where students, scholars and practitioners can meet, perhaps live, and learn from each other.
The farm will not stand alone, but will be integrated into the greater Hudson Valley community, with which it will engage collectively and creativity to unleash an extraordinary, historic Transition to a future beyond fossil fuels; a future that is vibrant, abundant, resilient, and ultimately preferable, more equitable, and more economically viable than the current model:
Wellbeing Farm will be a physical place, showcasing the efficacy of producing local food and power in our bioregion.
It will provide the space, time, structure, and opportunities needed in which practitioners can develop implementable ideas for achieving a locally focused, highly functioning, steady state economy.
The Farm’s workshops will preserve the skills and tools of the past, reworked and transformed into crafts that will serve us adroitly in a carbon constrained future. Among those skills: Wood fired ceramics; small scale iron forging and bronze casting; traditional rope making (using locally harvested natural fiber); woodworking; stone and thatch work; “passive – zero net energy” building design and construction; wind, water mill, and solar steam energy solutions; leather working to create tack for working horses; beer, cider, and spirit distilling utilized in food preservation and medicine making; “bio-digestors for methane and fertilizer; low carbon transportation (including “short sea” sailing freight vessels appropriate to the Hudson River, Hudson Estuary and coastal trade), plus a multitude of other post-carbon commerce and communication technologies.
Wellbeing Farm will provide educational opportunities for experimenting with, and realizing, real world solutions to the environmental, economic, and social crises we face today, and those we will face on into the future.
Wellbeing Farm will enable people working locally to transition our Hudson Valley communities and the bioregion from a consumptive industrial model to a restorative model — shifting to a truly sustainable economy dedicated to core values of human and environmental health, cultural and biological diversity, care for commonly held resources, and cooperative nonviolence.
Wellbeing Farm will, above all, focus on Transition: on the common journey we must all take together if civilization is to thrive, evolve and fulfill our dreams for a better world. This will not be a journey born of desperation or despair, but one that is joyful and empowering. To paraphrase the title of Rob Hopkins’ book: Wellbeing Farm will embody the Power of Just Doing Stuff!
Wellbeing Farm; Three Organizing Principles
Principle 1: Permaculture — Permaculture practitionersdesign ecologically-sound human habitats and food production systems. This discipline strives for the harmonious integration of human dwellings, farming techniques, and communities within the surrounding natural world, including the microclimate, annual and perennial plants, animals, soils, and water. The focus is not on these individual elements, but rather on the shifting relationships between them to create a prosperous balance between human and natural communities. This synergy is enhanced when human systems actively mimic patterns found in nature.
The core tenets of Permaculture are:
• Take Care of the Earth: Provide first for all life systems so they flourish and multiply.
• Take Care of the People: Offer everyone access to the resources needed to thrive.
• Share the Surplus: Healthy natural/human systems generate plentiful outputs for all.
Permaculture principles practiced at Wellbeing Farm will entail eco-friendly food production, and far more. Energy-efficient buildings, nature based wastewater treatment, recycling, and land stewardship are other key holistic components.
Permaculture on the Farm will include research into practical economic and social structures that support the evolution and realization of more sustainable communities, encompassing co-housing and eco-village models, for example. Participants at the Farm will look closely at ways in which we can all interact productively, while respecting and working closely with nature.
Principle 2: Transition — The Transition Movement represents one of the most promising models available to modern society today for engaging individuals and communities in the far-reaching actions required to mitigate the negative socio-economic-environmental impacts of peak oil, climate change, and the global financial crisis. A key component of Transition is a move away from a large-scale, global production/distribution model and toward re-localization – achieving fulfilling and equitable local livelihoods, lived in harmony with home bioregions.
Underpinning Transition is an understanding that peak oil, climate change and the global economic crisis require urgent local action now. Without that immediate action, an era of far-more-costly fossil fuels – marked by disastrous global supply chain interruptions and shortages – looms and is inevitable.
Industrial society has lost the resilience needed to cope with such system shocks. So immediate adaptation is essential. And we must act together, using all our skill, ingenuity and intelligence, our home-grown creativity and cooperation, to unleash the collective genius of local communities and our bioregion to achieve an abundant, connected, and healthier future for all.
Wellbeing Farm will not need to reinvent the wheel to meet these Transition challenges.
Transition US is an already existing, and vital resource for building resilient communities in the United States, while Kingston New York Transition is tuned into local issues and solutions. Both organizations are linked into the worldwide Transition movement in which hundreds of interconnected communities foster their own unique local initiatives, benefiting all.
In addition, The Good Work Institute envisions a Just Transition to environmentally sustainable and resilient systems in the Hudson River Bioregion by advancing ecological restoration; democratizing communities, wealth and the workplace; fostering racial justice and social equity; re-localizing production and consumption, and retaining and restoring cultures and traditions.
Principle 3: The Folk School –Wellbeing Farm will operate utilizing five well-established Folk School philosophies and values: 1). Re-skilling – offering training in a varied range of past and contemporary practical tools and skills; 2) Inclusivity – assuming everyone has something to add to the journey, and to creating a more sustainable and resilient Hudson Valley; 3) Honoring Elders – recognizing that the young can learn invaluable lessons from elders with unique skills and stories to share; 4) Awareness – Transition requires we give up old paradigms to create a viable, abundant future; 5) Networking – cooperation, not competition, is the key to all citizens benefiting from innovative new learning opportunities.
Yestermorrow School
Wellbeing Farm; Creating a Sense of Place
The physical location, acreage, scope of programs and services at Wellbeing Farm will be dependent on funding and upon the needs of practitioners in the Hudson Valley Bioregion. It may begin small, then grow to meet our post-carbon societal and educational needs.
As we envision it today, Wellbeing Farm will be centrally located on multiple acres in the Mid-Hudson Valley. It could be centered at a single location, or scattered at several, depending on availability of facilities, land, and community need. It should be located near public transportation, near or on a major body of water, and sited near other sustainable activity centers and established institutions such as the Farm Hub, Esopus Agriculture Center, Arrowhead Farm Agricultural Center, Garrison Institute, and the Omega Institute.
Element 1: The farm itself – No matter where situated, Wellbeing Farm must offer a welcoming, bucolic, stimulating, beautiful landscape in which to think, work, create and write – a place where practitioners can experience relationships between human beings and the natural world. Instructors and mentors will be drawn from a wide variety of disciplines and experiences; they will require physical amenities to achieve their teaching goals, for example:
Anagama Kiln
Builders will require sufficient land to construct full-sized buildings, for teaching post and beam, cob, cordwood, stone and thatch construction, and other green building methods.
Millwrights will need a place to build/repair water and wind projects
Farmers, foresters, and those working with horses will need sufficient land and facilities for crops and livestock, to practice veterinary skills, harness making and repair, and for modifying tractor-drawn machinery for horses.
Sail freighters will require a dry dock and waterway on which to build / rebuild small sail freight boats, learn rigging, and seamanship.
Wild foragers will require forest, meadow, and wetland habitat in which to teach forest gardening and gleaning techniques. Boyers (bow makers) and gunsmiths will likewise need a place where natural materials and tools are available.
Furniture makers must have a local source of wood, a sawmill, drying shed, and workshops.
Weavers will need a wool source, plus a place to clean, spin, and dye.
Potters will require clay, wheels, kilns and shelter.
All participants will need a place to socialize and learn skills from each other.
Ultimately, what may evolve is a centralized Wellbeing Farm facility, surrounded by nearby satellite locations providing all sorts of teaching opportunities for people of all ages.
Also, a portion of the farm must be left undisturbed and natural, serving as a place for nature observation and solitary contemplation.
LIbrary
Element 2: The Bioregional Traditional Knowledge Database – Wellbeing Farm will serve as a repository for vital traditional knowledge — encompassing arts, crafts, livelihoods, and connections to our natural heritage, all in danger of disappearance. This database will form an “extraordinary source of knowledge and cultural diversity from which the appropriate innovation solutions can be derived today and in the future.”
The Farm’s bioregional database will emulate and interface with the UNESCO International Traditional Knowledge Institute (ITKI) an ambitious project intended to preserve, restore, and promote the re-use of traditional skills and inventions from all over the world. ITKI includes among its important resources an online encyclopedia of low-tech know-how.
The physical and electronic database at Wellbeing Farm will include a collection of books, blueprints, photos, and drawings showing how things were made and how we fed ourselves in a pre-carbon world – including resources such as the Whole Earth Catalog, books published by Shelter Publications, the Foxfire books, mechanical engineering texts, trade encyclopedias, and downloaded and printed reproductions like Small Hydropower Systems, home built windpower, and books and resources for pre-petroleum technology.
Element 3: Common Ground Fair Hudson Valley – Working with the New York Organic Farming Association (NOFA-NY), Wellbeing Farm will provide space for an annual “Common Ground” Country Fair. This event will bring together a large gathering of farmers, change agents, artisans, musicians, Slow Money social entrepreneurs, Permaculture and Transition practitioners, Eco-Villagers, organic farmers, fishermen, seed companies, natural food stores, chefs, cooperatively owned small businesses and thousands of families from throughout the region interested in manifesting and welcoming a new approach to the future. This event, along with other celebratory activities will generate strong lasting bonds between the Farm and surrounding communities.
Element 4: Educational Opportunities for Children – Wellbeing Farm is, above all else, a place where people of all ages can learn. And while many participants will be adults honing new skills, it is vital that an honored seat at the table be maintained for children, and for their education.
Permaculture as a design system is rooted in an understanding of ecological principles – and it is best if that understanding is cultivated early, through sensory awareness of the natural world, natural cycles, energy flow and interconnectedness. For that reason, the farm will foster a close relationship with Hudson Valley Bioregion schools pre, primary and high schools, and existing programs such as Creek Iverson’s Seed Song Farm Summer Camp, and Wild Earth’s summer camp. Field trips will often arrive at the Farm, bringing young people to see how their world is being re-skilled; likewise, practitioners will travel to schools often to teach a range of new livelihoods.
In this way, the Farm will help ensure that our children have the best possible start to understanding the “why” behind the “how” of our Permaculture ways — learning skills that far transcend the deskbound limitations of old school education models. Children will be introduced to a vast range of hands-on crafts and folk art skills, ranging from toolmaking to basketry; clothing construction, fiber and fleece production; gardening and farming, gleaning and food preparation; learning to work with and respect working animals; while also cultivating a love for traditional, self-made music, storytelling, nature observation, and much more.
Wellbeing Farm; Why Now?
We live at a highly precarious – but also fascinating and hopeful – point in history. The convergence of massive challenges, particularly climate change, peak oil, and the global economic crisis, has brought us to an historical moment where we are profoundly prompted to act.
We the People are surrounded by “experts” telling us that we have gone too far, that civilization, and maybe humanity, are doomed; and worse that our end is inevitable – that the web of life as we know it will collapse catastrophically and soon.
The magnitude of the challenge ahead is huge, and the obstacles are plenty. But there is an emerging energy, positive spirit, and the will to succeed and thrive. There is a sense of exhilaration arising out of our talking and listening to each other, to not accepting the faltering status quo, but envisioning what we want and then rolling up our sleeves and starting to co-create it.
There is no denying the challenges we face, but there is also no denying the practical, instinctual, democratic response that is arising among We the People today. In towns and cities everywhere we are asking each other: “What can I do right now? How do we get started?”
In a world of rapidly diminishing resources and increasing stresses on natural and social systems, we must rapidly join to implement innovative equitable strategies to restore degraded landscapes, to feed all people well, to convert our energy-wasteful infrastructure into holistic natural/human systems that benefit everyone. Wellbeing Farm is part of that vision – a real place in the Hudson Valley Bioregion where we can create a bountiful future together.