You Made It Happen! The Center for Post Carbon Logistics Achieves Fundraising Goal
Meet the Andrus Sustainable Logistics Fellow Apollonia Supercargo Brad Vogel. Brad has been at the forefront of developing an alternate green logistics framework in the NY region since 2019, and we are excited to see him going full time on the sustainable shipping and logistics front. He will start the fellowship in June of this year.
The Center for Post Carbon Logistics (C4PCL) has met its fundraising goal for the Erik Andrus Sustainability Fellowship. So many of you helped make that happen – and the C4PCL, the Schooner Apollonia, and all the organizations and businesses that will benefit from Brad’s work, could not be more grateful!
Brad Aboard Apollonia The new Fellow will help Apollonia and other sustainable ventures in the Hudson Valley and New York Harbor grow a robust regional green logistics network. Building that network will reduce emissions in communities in the Hudson Valley and New York City.
You can can continue to support the new Andrus Fellowship and the mission of the Center for Post Carbon Logistics. Please consider making a tax-deductible donation here . If you don’t require a receipt you can donate by check here.
Some background:
The Erik Andrus Sustainable Regional Logistics Fellowship is a project of The Center for Post Carbon Logistics. The position is named for Erik Andrus, the rice farmer who created the Vermont Sail Freight vessel Ceres and inspired many regional “make-sustainability-real” efforts. As such the Coordinator will emphasize practical, day-to-day work, but also fundraising and meeting with various governmental and commercial entities, toward these goals but also emphasize sharing of information and building of community to aid in the overall effort.
Vermont Sail Freight Vessel Ceres
The Andrus Fellow (coordinator) will initiate, support, and develop a sustainable logistics network that links manufacturers, suppliers, wholesalers, retailers and consumers, key components of sustainable transport supply chain on the Hudson, the New York State canal system, New York Harbor, and coastal New York. This sustainable logistics network will reduce fossil fuel use and carbon emissions from the transportation of goods and people throughout the region.
Schooner Apollonia is America’s only sustainable sail freight vessel, operating on the Hudson River and in New York Harbor. Over the past three years, Apollonia has shipped over a hundred thousand pounds of goods by wind, reducing regional emissions. Apollonia has made something clear: taking action to build toward a more sustainable post-carbon approach to logistics is possible in our region. Even if the initial steps are small, we need to act.
Schooner Apollonia
Inspired by Apollonia’s work, it’s time to take the next step toward greater regional impact – with a full-time fellow dedicated to sustaining and growing tangible, feasible low carbon transport projects. Your tax-deductible donation to the Center for Post Carbon Logistics will support the hiring of the Andrus Sustainability Fellow to maintain and grow the expanding regional green logistics network that Apollonia has helped pioneer.
Trade Route
In the first year, the Fellow will serve the Schooner Apollonia in expanding and strengthening the logistical backbone of its sustainable sail freight network of distribution, storage, transport, and fulfillment services, while also providing support to a select group of regional low/no carbon first and last mile logistics companies, producers, purveyors, wholesalers, retailers, and end users.
Specific tasks will include but may not be limited to:
Documenting, improving, and expanding Apollonia’s existing trade routes
Providing outreach and interpretation of Apollonia’s mission through virtual, customer venues, and “on dock” events.
Coordinating with other decarbonization efforts (both high profile and/or small-scale) across a range of prospective community-centered and commercial ventures
Analyzing and greening every logistical input to and output from the Apollonia’s existing trade routes with over 100 shipping partners.
Being the point of contact for the 20+ existing docking partners (private, municipal, and non-profit), the hundreds of individual customers, low no carbon first and last mile logistics providers, and thousands of supporters.
Although initially focused on wind-powered vessels, all practicable methods of eliminating fossil fuel-powered transport will be a priority. The coordinator will also promote solar vessels, live/electric cargo bicycles and trailers, as well as electric, biofuel and hydrogen powered vehicles, and will participate in the development of a regional network of linked low/no-carbon businesses, organizations, and institutions, and the establishment of resilient regional micro-hubs (ranging from moderate-scale ports and required infrastructure, depots and warehouses, and partnerships with on-call green transport support networks).
The long-term aim is to develop a regenerative regional for profit/not for profit hybrid cooperative logistics provider that takes on and continues the work of the fellowship. The goal of both the fellowship and the emergent entity is the same: to create and promote real, practical, resilient change, to build tangibly toward a future of an operational post carbon logistics with end-to-end management of specific services, a vital part of maritime based supply chain management.
During the initial year of the fellowship, the coordinator will liaise with the Director of The Center for Post Carbon Logistics and the Captain of Schooner Apollonia on a regular basis. The role, in the first year, reflecting the work required for coordinating, executing, and improving Apollonia’s existing logistics and growing the regional sustainability network. Thank you for supporting this important position, program, and its outcome.
Although these comments refer primarily to the Transportation Sector, we reserve the right to comment, in writing or in person, on the final version of the Scope of Work and any draft and final versions of the New York State Climate Action Plan and other documents, legislation, and regulations pertaining to the Climate Leadership and Community Protection Act of 2019 (CLCPA).
The Center for Post Carbon Logistics (C4PCL) is a New York State non-profit organization that envisions a world of resilient, re-localized communities connected to one another through post carbon transport and logistics systems.[i] The Mission of The Center for Post Carbon Logistics is to research and assist in the implementation of appropriate post carbon maritime technology needed to keep commerce and transportation viable by responding to the interrelated connectivity, communication, equity, economic, ecological, and energy crises of the 21st Century.
Overview of the Scoping Plan and the Transportation Sector:
The C4PCL agrees with and applauds the Council’s Benefits of Adaptation and Resilience and expects that the comments provided by the informed and engaged public will bolster the Council’s resolve to implement policies, programs, and projects to reach and exceed these aspirational goals in the short, mid, and long term.
Adaptation and resilience planning is about protecting people and ecosystems from the changes caused by a changing climate. Individuals, communities, and regions have come to recognize the need to prepare for the risks posed to their quality of life, infrastructure, and physical safety by climate change. These risks are disproportionately high for Disadvantaged Communities. Investment in adaptation and resilience can improve quality of life, stimulate local economies, and protect the environment.
Chapter 2. of the Scoping Plan lays out the impacts of climate change in New York. The C4PCL agrees with the analysis of the impacts of the climate crisis and is willing and able to assist the Council in informing the broadest possible population with the immediacy of the threat and the need to act quickly with the necessary information to effect real change.
New York’s geographic and socioeconomic diversity will lead to a wide range of experienced climate driven impacts. Warming trends and incidences of intense heat waves will contribute to greater localized heat stresses; heavy rainfall events that exacerbate localized flooding will continue to impact food production, natural ecosystems, and water resources; and sea-level rise threatens sensitive coastal communities and ecosystems. Climate-driven impacts are magnified when accounting for New York’s most vulnerable populations, who are often disproportionately affected and on the front lines of climate change.
The Council has a responsibility to empower individuals and communities in the far-reaching actions required to mitigate and adapt to the negative socio-economic-environmental impacts of climate change. A key component must be a move away from a large-scale, global production/distribution model and toward re-localization – achieving fulfilling and equitable local livelihoods, lived in harmony with home bioregions.
Underpinning this transition is an understanding that the climate crisis requires urgent national, state, regional, and local action now. Without immediate action in New York’s transportation sector, an era of far-more-costly, and less available, fossil fuels – marked by disastrous global supply chain interruptions and shortages – looms and is inevitable. We have lost the resilience needed to cope with such system shocks. So immediate adaptation is essential.
Because words have power, The Council, must pay close attention to the thousands of commentors and be prepared to craft a compelling collective story – a promising vision of what New York in a carbon constrained future might be – not so much in policy and technological terms, but by providing community leaders the information and tools they need to engage their communities, family, friends, neighbors, and colleagues about what a positive path through the climate crisis will entail – to explore an array of innovative heritage and leading-edge technologies by which New Yorkers can thrive in decades ahead – designing and realizing pragmatic, environmentally and economically sound tools for peacefully, equitably, and intelligently transitioning away from fossil fuels. We must act together, using all our skill, ingenuity and intelligence, our home-grown creativity and cooperation, to unleash the collective genius of local communities, individuals, organizations, supported by the climate action plan, to achieve an abundant, connected, and healthier future for all.
As a species, we are storytellers. And the stories we tell collectively, whether they be found in Gilgamesh, the Bible, folklore, tradition, or government policy all serve as action plans for the time. They tell us what worked well in the past so we might move into a productive future. But sometimes those tales become outdated and the signposts pointing to safety in the past instead lead us down paths into danger.
The tale we’ve told ourselves over the last 300 years, since the “Age of Reason” and on into the modern Age of Expansion, is that we live in a time of limitless progress, of ever-expanding opportunity and possibility, in which there is a high technological fix for every problem.
In this story, we tell ourselves that unlimited growth and soaring GDP is a real measure of economic health and community wellbeing; that a rising stock market protects us, no matter how rundown our neighborhoods; that deregulation stimulates investment, even as climate destabilizing emissions rise; and that national security need only focus on existential threats beyond our borders, and not on quality of life and preservation of civil liberties.
Today, climate change — along with the socio-environmental and economic upheaval it brings — is turning the idea of endless progress on its head. That’s why it is long past time for us to tell a new story: one that recognizes the turbulent sea of change we sail in; a story that recognizes the dangers around us but doesn’t demand a fear or grief response. This new story inspires us to prepare together as communities with open eyes, minds, and hearts — ready to face the risks of impending calamity while embracing the promise of resilience and hope of regeneration.
We need to change the narrative now, embrace a new story truer to circumstance — a storyline in which we heroically face adversity together, creating abundance out of crisis together, moving with agility through chaos toward new community values that will sustain us in the unsettled years ahead. The roots of that story are certain: we will thrive only by being earth and community stewards, rather than exploiters; only by demanding that our leaders address not only the economic balance sheet, but also our ecological and equity balance sheets. Only then will we be able to go ahead with hope and find a safe harbor in the climate crisis. Only then can we leave a better world for our children.
For the Council to tell this story we must first Assess and Evaluate: Start by objectively assessing threats, then unflinchingly evaluate the greatest points of weakness — whether these take the form of infrastructure; social, public health, economic, environmental, or political structures. We need to fortify those weaknesses against the storms to come — work that will enrich our State, cities, towns, and neighborhoods in the present, while reducing risk and enhancing resilience for the future. Unfortunately, the Transportation Sector is tepid in its goals and strategy for finding solutions in a timely way to the unfolding climate crisis in New York. It is time for bold action not “hedging.,” because there is generally resistance to change, and The Council and its recommendations have powerful adversaries.
The corporate interests behind New Yorkers for Affordable Energy have already succeeded in eliminating a proposal from the state budget to ban fossil gas hookups in newly constructed buildings – which was recommended by the Climate Action Council in its draft scoping plan – and are now promoting misinformation to further weaken New York’s agenda as the Climate Action Council reviews comments on its proposed plan.
New Yorkers for Affordable Energy launched a television ad that seeks to drum up opposition to the proposal through misinformation. The ad claims that the bill would “ban gas stoves and furnaces… sticking you with a $30,000 price tag to replace them.” Energy Citizens an arm of the American Petroleum Industry is telling an untruthful but compelling story…….. Want Albany to choose your appliances? And Don’t let the government tell you what kind of appliance you can buy.“
The first thing that the Council must do to counter this negative propaganda is clarify the crisis and provide the informed and engaged public with attainable goals for a “softer landing” for our children and grandchildren in what is likely to be a chaotic midcentury future. And hire an equally talented public information/crisis management consultant to counter the incessant and misleading negativity of the New Yorkers for Affordable Energy.
The Council must re-evaluate the use of terms like growth and competitiveness in addressing the Climate Crisis:
The faster we produce and consume goods, the more we damage the environment,” Giorgos Kallis, an ecological economist at the Autonomous University of Barcelona, writes in his manifesto, “Degrowth.” “There is no way to both have your cake and eat it, here. If humanity is not to destroy the planet’s life support systems, the global economy should slow down.”
In “Growth: From Microorganisms to Megacities,” Vaclav Smil, a Czech-Canadian environmental scientist, complains that economists haven’t grasped “the synergistic functioning of civilization and the biosphere,” yet they “maintain a monopoly on supplying their physically impossible narratives of continuing growth that guide decisions made by national governments and companies.
In the mid-1970s, the phrase “small is beautiful” became a counterculture slogan against the industrial threat to the environment and the scarcity of resources. Arguing against excessive materialism and meaningless growth, the late Dr. Ernest Friedrich Schumacher—the author of Small Is Beautiful: Economics as if People Mattered,
… promoted the use of small-scale technology to benefit both humankind and the environment. As an economist trained in a market-oriented discipline, his thinking evolved from believing that large-scale technology could be salvation for industrial civilization to believing that large-scale technology is the root of degrading human beings and the environment.
In the Transportation Sector, as well as the entirety of the Scope of work for the Climate Plan, a new way of looking at the economy, culture and environment of New York must be adopted. The idea that growth is necessary skews the plan away from true mitigation and adaptation to the Climate Crisis. The document also does little to explain the role of public and private transportation policy and implementation decisions made in New York, in conjunction with the federal government, in creating and exacerbating the climate crisis.[2]
The transportation challenge: We in New York need to think differently about how to move goods and people from place to place in a carbon constrained future because we are living in an age of unprecedented change, with several crises converging. These calamities have been exacerbated by the profligate use of cheap, non-renewable fossil fuels. This “quadruple crunch” of overlapping events, a global financial crisis, pandemics, accelerating climate change, and aberrant fluctuations in energy prices exacerbated by imminent peak oil makes it increasingly clear that this combination of events threaten to develop into a “perfect storm” with devastating economic and environmental consequences for not just the New York but for the country and the world.
New York’s transportation sector contributes almost 30% of carbon emissions. And the seminal questions that should be asked by the Council in this sector is:
In a carbon constrained future, how will goods and people be moved from place to place, and what role will The Climate Action Plan provide in resources and leadership?
How should we meet the looming challenges of climate change, rising sea level, aging infrastructure, changes to global shipping and supply chains, threats to food security, and the risks these changes bring to New York’s environmental, cultural, and financial wellbeing?
How do we address this daunting multitude of challenges and turn them into opportunities for transforming transportation to serve our State far effectively and efficiently into the future?
Summary of Recommendations: C4PCL’s comments focus on opportunities, adaptation, and mitigation in the Transportation Sector and on solutions that use and enhance New York’s entrepreneurial, commercial, and industrial enterprises, makers, processors, local resources, and by training and employing New Yorkers in a carbon constrained future.
Recommendation 1. Decarbonize Maritime Transportation: Moving goods and people from place to place in a carbon constrained future will be dependent on sailing vessels, hybrid/fossil free electric ships, and people/electric, powered transport for first and last mile logistics.
Recommendation 2. Converting ICE vehicles to EVs/ZEVs/alternative fuels: There is very little disagreement that EVs/ZEVs are the future of the automobile and light truck industry. Over the lifetime of a ZEV the carbon footprint is significantly less than an internal combustion vehicle. One huge problem given short shrift in the Scope is what happens to all those ICE vehicles that get traded in?
Recommendation 3. Improved and Free Transit: Tallinn, Estonia made international headlines when it became the first capital city in the world to introduce free public transport for its residents in 2013.
Recommendation 4. Demand Responsive Transportation (DRT): When it comes to improving public transportation in rural areas—flexibility is key. The first step is to provide an easy and efficient way for more people to access public transportation. On-Demand Public transportation, also known as Demand-Responsive Transportation (DRT) provides a way to increase the geographical coverage of a traditional public transit service.
Recommendation 5. Electrification of commuter, interstate, and municipal buses: Close to 90% of commuter intra and interstate buses are diesel powered. Some municipalities are transitioning to hybrid and electric buses, but the Plan should include regulation, incentives, and subsidies for the conversion of all diesel-powered buses.
Recommendation 6. Electrification and Solarization of freight and passenger trains: Trains are one of the most efficient and sustainable form of transport. Worldwide around 75% of trains have been electrified, while 25% still use fossil fuels. The bad news is that even electric locomotives use a partially polluting mix
Recommendation 7. Improved bicycle and E-bike transportation opportunities: Although electric bicycles didn’t receive much attention during the COP26— to the chagrin of some sustainability mobility advocates — 2021 was the year they found a more welcoming home around the world. An analysis by Business Research published in mid-November estimated global e-bike sales at $36.5 billion for the year, a compound annual growth rate of more than 12 percent over 2020. Within three years, revenue could reach $53.3 billion, the market research firm predicts.
Recommendation 8. Airships and electric aircraft: Airships are relatively inexpensive, they can carry a substantial amount of cargo, and they are significantly more environmentally friendly than their heavier-than-air relatives. Once thought to have passed into memory, airships are having something of a renaissance.
Moving goods and people from place to place in a carbon constrained future will be dependent on sailing vessels, hybrid/fossil free electric ships, and people/electric, powered transport for first and last mile logistics.
Despite its present dominance, our current maritime logistics system is fragile. It is reliant upon carbon-based fuels driving internal combustion engines. It is interwoven into long-distance, globalized world trade. It is designed for Just-In-Time delivery. And it depends upon its present ability to avoid paying for negative externalities such as carbon emissions and environmental pollution, and to avoid being governed by meaningful labor, environmental, health, and other laws.
polluting vessel
The international shipping industry is one of the largest greenhouse gas emitters. If the maritime sector were a country, it would be one of the top six carbon polluters. The shipping industry has been reluctant to take unilateral leadership on emissions. The International Maritime Organization (IMO) is puttering around the edges. It recently declined to make a greenhouse gas reduction plan or commitment. The United States for a variety of reasons, chief among them that there is a tiny US flag fleet, has remained almost silent on this issue.
The Center for Post Carbon Logistics (C4PCL), along with a local, regional, and international coalition posit an alternative. That alternative is disruptive competition from an emerging suite of technologies –solar, wind/sail, and green hydrogen powered shipping on New York waterways. Water-borne shipping, even now, is dramatically more energy-efficient than its land-based counterpart. New York, with its network of waterways connecting the Great Lakes to the Hudson, to New York Harbor, and the ocean, has a leadership opportunity in growing this industry.
Achieving New York State’s Climate Act’s goals will require addressing the enormous footprint of transporting goods and people using fossil fuels. Building Future Proof ships in New York’s Hudson River shipyards is the first step toward a regenerative shipping industry on New York’s canals, the Hudson River, The Harbor, the East Coast, Caribbean, and transatlantic routes.
New York’s Waterways:
What role will New York’s waterways play a carbon constrained future? How should we meet the looming challenges of climate change, rising sea level, aging infrastructure, changes to global shipping patterns, threats to food security, and the risks these changes bring to New York?
The USDOT Maritime Administration (MARAD) America’s Marine Highway Program was created by Congress in 2007 and expanded in 2012 and 2016. Marine Highways are water-based freight corridors. For example, M-87 includes the Hudson River and connects ports and harbors from New York City to Albany and navigation channels such as the Erie Canal. The MARAD program was created to expand the use of the country’s navigable waterways to relieve landside congestion, reduce air emissions, and provide new transportation options to increase the efficiency of the surface transportation system. MARAD administers a grant program to fund system improvements. New York is served by Marine Highways M-87, M-90, M-95, and M-295.
The Hudson River, a Water Highway
Not so long ago the Hudson River was a bustling highway linking even the smallest communities to a web of regularly scheduled commercial routes. Schooners, sloops, barges, and (much later) steamboats provided a unique way of life for early river town inhabitants. Farmers, merchants, quarrymen, brick factories, and oystermen relied on this vibrant and diverse fleet of vessels to bring in supplies and deliver their goods to market. This arm-of-the-sea was an integral part of the lives of those who worked New York’s waterways.
However, life at the water’s edge is rapidly changing. The impacts of new technology, patterns of urban development, and globalization are redefining global logistics, and while some waterfront cities will thrive as ports and grow under these new conditions, others will need to evolve to survive and succeed…. How will New York re-invent its maritime transportation sector?
How do we address this daunting multitude of challenges and turn them into opportunities for transforming our waterways and ports to serve our regional and national economy effectively and efficiently into the future?
If present trends continue, New York and its largest and smallest ports will need to be transformed into the spokes of a hub for “short sea shipping” rather than serving as terminus for unsustainable container cargo. The good news: the New York has an extensive network of waterways, and so is very well suited for the short sea shipping mode of freight transport. Moreover, public agencies and private companies are investigating the potential economic and environmental benefits of transferring more cargo from road to sea.
As New York moves forward to low/no carbon shipping and the working waterfronts of tomorrow, the constraints, and in some cases the advantages, of smaller and (s)lower tech modes of transport must be considered to support these imminent changes.
If the New York’s maritime transport and working waterfronts are to thrive, 19th, 20th, and 21st Century technology must meld seamlessly into new, mid-century methods of transport with an emphasis on what might seem like bygone, but productive, methodologies to become more self-sufficient and sustainable.
Priorities, amendments/additions to Transportation Sector:
Green Shipping Corridor
The Council Adopts a Hudson River Green Shipping Corridor:[ii]
Achieving zero emissions from maritime transportation over the coming years and decades will require research, development, demonstration, and deployment at a massive scale, as well as enabling policies that incentivize the shift to low- and zero-emission fuels and technologies as soon as possible. Adoption of these fuels and technologies, while limited in the short term, will rapidly accelerate once the supply chain is established and governments and the shipping sector signal their intent for energy transition.Green shipping corridors are meant to accelerate this early adoption phase. They therefore should strive for emissions reductions that push the envelope beyond business-as-usual, demonstrating a commitment to achieve full decarbonization through sustained efforts. Green shipping corridors will not achieve zero emissions across all aspects of the corridor overnight. Instead, the journey to establish a fully decarbonized corridor is a series of steps and actions taken over time to cover all aspects of the route.
One of the first steps in creating a green shipping corridor is to convene relevant stakeholders across the value chain and to outline anticipated timelines, targets, and achievements. Creating a fully decarbonized green shipping corridor is a process, which will require long-term plans to help participants achieve their emissions reduction goals. Stakeholder engagement will be critical, especially with residents in communities with environmental justice concerns, to ensure strategies are tailored to address the priorities and goals of near-port communities. New York State through its Climate Plan establishes the Hudson River, and the New York State Canal System as the nation’s first Green Shipping Corridor.
In April 2022 the C4PCL and colleagues[3] provided the NYSDOT, with materials for consideration to become the applicant for the Maritime Administration, Marine Highway project designation for Hudson River based maritime commerce projects. The Department responded after several weeks of deliberations, without explanation, that the project did not qualify. We, adamantly disagree and although the deadline for applications for project designations has passed for this year, we believe that these projects have merit and will continue to pursue them, and specifically ask that this project designation is included in the Climate Plan’s Transportation Sector.
New York Marine Highways
Why this designation?
The Hudson River properly prides itself in being the cradle of pioneering maritime technology and the birthplace of the environmental movement. It has always been a magnet for innovative thinkers and doers in transportation technology, maritime commerce, engineering, agriculture, business, and artisanship who are inventing new ways of doing business and employing people with a smaller environmental footprint and a passion for equity and inclusion. Our regional post carbon maritime strategy is designed to engage and support the creative economy, broadly defined, and to be disruptive in a positive way.
This collaborative effort extends the entire length of the M-87 Marine Highway[4] corridor and revolves around, but is not limited to the New York State Canal System, Hudson River, New York Harbor, the US East Coast, and Caribbean.
To highlight the benefits, increase public awareness and promote The Hudson River as a necessary alternative to “landside” shipping and transportation options, a group of maritime professionals and advocates from all around the region propose a series of Marine Highway project designations to:
Adopt a Hudson River Green Shipping Corridor
support existing and proposed low/no carbon commercial maritime ventures and post carbon logistics,
enhance ship building and repair industries,
the revitalization and resilience of small Hudson River ports,[5]
and the re/training of shipwrights, longshore and logistics professionals, and mariners. (see 6.The Hudson River Maritime Innovation Center)
In the 19th until the mid-20th centuries, the Hudson River bustled with commerce and lay at the heart of a thriving network of “Marine Byways” — waterways stretching from the Atlantic west to the Great Lakes linking cities and the smallest communities to a web of regularly scheduled transportation routes. For hundreds of years, thousands of ships and boats of all sizes served local cargo and passenger needs. The Hudson River — and the ships and boats sailing her — were vital to those who lived and worked along these inland waters, putting those communities on the map.
Today, however, waterways like the Hudson River, and its small ports are underutilized. Incentivizing shippers to use this critical transportation corridor more consistently would create significant public benefits and opportunities, including but not limited to a lower carbon footprint for the movement of freight and passengers.
create and sustain jobs on New York built vessels, and at ports, and shipyards
relieve landside congestion in transportation and shipping
show by practical example, the use of emerging resilient and renewable propulsion technologies
improve New York’s and the US economic competitiveness by adding new cost-effective freight and passenger transportation capacities
improve environmental sustainability of New York’s and the US transportation system by using less energy and reducing greenhouse gases per passenger or ton-mile of freight moved
Marine Highway Proposal for Project Designation:
Although the M-87, the Hudson River from NY Harbor to the Erie Canal is designated a Marine Highway, until recently with the reinvigoration of sail cargo and solar powered passenger service, there has been underutilization of the river’s small ports. The primary commercial vessels currently transiting the Hudson are petroleum and chemical barges, some ocean-going ships, and tug and barge project cargo going directly from New York Harbor to Albany/Troy, and some seasonal tour and cruise ships.
The proposed Marine Highway project designations will address this limitation as it activates a network of maritime transportation advocates, shipping and agricultural products processing enterprises, “makers” and small manufacturers, first and last mile logistics businesses, ship yards and boat builders, community organizations, municipalities, counties, and The State of New York to revitalize the Hudson’s maritime economy anticipating the challenges and advantages of moving goods and people by water in a carbon-constrained future, and to ensure that this vision is aligned with community, ecological, and equity values and sensibilities; to achieve this goal. The following are the projects that are proposed for designation to make them eligible for funding under the Maritime Administration, Marine Highway grants program.
The Schooner Apollonia is engaged in commerce under sail on the Hudson River and New York Harbor. Apollonia is a 64-foot steel-hulled schooner built in Baltimore, MD in 1946. She is designed to move efficiently through the water, powered by a traditional gaff-rig sail plan designed by naval architect J Murray Watts. With a 15’ beam and rugged steel construction, she’s a stout work boat capable of carrying 20,000 lbs. of cargo. Being a schooner, the crew requirements are smaller, and the variety of sails gives flexibility for different conditions that we will encounter on the river. Apollonia is the descendant of the Hudson River Sloop and the proof of concept for Jones Act compliant, purpose-built sail cargo vessels designed for River, Harbor, and short sea coastal trade.
Hudson River/New York Harbor Sail Cargo Service
When designated, the project funding will be used to expand the operations of the Schooner Apollonia and the ports and customer she services. Apollonia is an existing sail cargo business transporting primarily malt, flour, and grain to distilleries and breweries, other agricultural products to processors, and shelf stable local food and beverage products to customers. To continue to develop the route, secure docking, loading, and unloading facilities, warehousing, first and last mile low carbon logistics, secure haul back cargoes, upgrades to existing vessel, and R&D and design a purpose-built ship(s) for this route will require significant public and private investment.
Develop a low carbon logistics system, more of a “warehouse in transit,” than “just in time” model. To implement the “parallel” low/no carbon logistics system, a “post carbon” third party logistics company (PC3PL) will be established. This PC3PL provider is a specialist company that will provide a range of distribution, storage, transport, and fulfillment services to Apollonia, (and to other vessels as the fleet expands) as well as low/no carbon first and last mile logistics companies, producers, purveyors, wholesalers, retailers, and end users. These companies would outsource these types of operations to the PC3PL business and rely on the PC3PL to offer end-to-end management of specific services.[iii]
The expansion of an existing maritime cargo service:
To meet the emergent climate crisis, and to confront the immense carbon pollution of the existing fossil fueled transport of goods and people throughout New York and the Hudson Valley, a new generation of “future proof” Liberty from Fossil Fuel Ships will be upgraded, repurposed, and locally built to enable the continued movement of goods and people from place to place by water in a carbon constrained future, and to highlight the benefits, increase public awareness, and promote The Hudson River as a necessary alternative to “landside” shipping and transportation options.
These ships will be brutally simple, but elegant, re-used, re-purposed, and purpose built by local shipwrights to kick start the revival of US flagged ships in domestic, short sea, and international trade. Using proven construction techniques and tried and true (as well as innovative) sail propulsion/electric propulsion technology these “flagships of the future” will be the first steps in adapting to and mitigating the climate crisis, that in significant part is caused by fossil fueled transport.
Locally built, from locally sourced and recycled materials, crewed with locally trained mariners, home ported along the Hudson, the Harbor, and the canals, carrying locally grown, locally processed, and locally manufactured goods – with liberty from fossil fuels, these future proof ships will be a positive disruption to the status quo.
Eriemax RSS 80 Geoff Uttmark
Purpose built vessels for M-87, M-95, and M-90 Marine Highway Service:
Eriemax Sail/Electric Canal, River, and Coastal Cargo and Sail Training Vessel:
Develop final design, with upgraded electric propulsion system and rig, and develop shipyard plans for Transtech Marine/Ship Shares/Eriemax sail electric cargo and training vessel. Using the design and business plan, Eriemax Progress Report 7_ Final Report_25543 Rev2.pdf, developed by Naval Architect Geoff Uttmark for NYSERDA,
develop final design, building plans, and price of construction at a Hudson Valley Shipyard, for a purpose-built prototype 80’ canal, river, and coastal, sail cargo vessel for a new generation of climate adaptive modular design freighters using the best combination of traditional and new technology. The $800K to 1.5 million (estimated) price for construction could come, in part from the Federal Ship Financing Program (Title XI) and significant public, private, and crowdfunded investment. Concept in Appendix 2.
Electric Clipper Derek Ellard Design
R&D, design, and develop shipyard drawings for a purpose built 180-200’ “short sea” and transoceanic “Electric Clipper” sail freight and training vessel with a cargo capacity of up to 900 tons or 36 TEUs. A concept drawing of this vessel is included in appendix 2. The estimated $2.5 to 3.5 million construction cost could come from the Federal Ship Financing Program (Title XI) and significant public, private investment and crowdfunded investment.
Hudson River Solar Ferries. This grant, when designated, will support a comprehensive ferry master plan to develop a new, modern, efficient, solar electric passenger and cargo ferry design for Hudson River transits. The plan will serve as a comprehensive analysis of operations and service needs, and help determine the types, sizes, and number of ferries that are needed in the future. With a regional and national push towards a low carbon economy transition, the Hudson River passenger ferry system can incorporate technologies within the vessels that can benefit the environment, passengers, and the communities the ferries serve. These funds will also be used to develop preliminary designs for these vessels and will make use of the three years of performance data from the operation of the solar electric Coast Guard inspected passenger vessel Solaris. An additional option would be to convert the existing Beacon/Newburg Ferry to battery electric. This project then could be considered an expansion of existing service.
The Marine Byways and Resilient Small Port Toolkit,[iv]when designated, will collect, and disseminate (in reports, apps, and interactive websites) new and existing information to enable the revival of small port working waterfronts, and small to medium sized maritime and logistics businesses. This data collection will include but not be limited to review, analysis, and reporting of the findings of government and non-governmental reports and publications, as well as field checking and developing new sources of information.[v] Examples already underway, or completed are GIS port mapping work being done by the Schooner Apollonia and the Center for Post Carbon Logistics with assistance from Vassar College interns,[6] and GIS flood mapping work done by Kytt McManus at Columbia, and by Scenic Hudson’s Sea Level Rise Mapper.
Rondout Riverport 2040/A resilient small port blueprint
A paper prepared for a conference in September 2021 for the Wind Propulsion Conference held by the Royal Institute of Naval Architects. The paper was republished in two parts at Resilience.org. Rondout Riverport 2040 Part 1, and Part 2. This report and publication along with other materials can be the basis of planning for resilient small ports throughout New York.
5. Decarbonizing Recreational Boating
In 2018, 2019 there was total of 440,381 boat registrations, of which, 435,213 were registered for recreational purposes in New York. Those, primarily powerboats consist of fossil fueled 2 and 4 stroke outboards and inboard gasoline or diesel engines, many large and small sailboats have auxiliary outboard or inboard gasoline and diesel engines.
Jet skis and pleasure boats combined accounting for 1.4 billion gallons of gasoline in the US.
Resins in fiberglass boats, “Dacron” in sails and lines are derived from fossil fuels
Boats release numerous harmful substances into aquatic and marine environments, including nitrogen oxide, particulate matter, carbon monoxide, and non-methane volatile organic compounds (NMVOCs).
ships and boats in the US produced about 44.5 million tons of carbon dioxide equivalent in 2019
E-boat and electric motor manufacturing opportunities
Electric powered boats, like electric automobiles were ubiquitous in the early to mid-twentieth century and are seeing a resurgence as motors, batteries, and solar panels become lighter and more available. There are New York based electric boat and motor manufacturers and with the appropriate incentives, such as expanding the Green Boat program statewide will provide more employment opportunities and economic development while reducing the carbon footprint of recreational and tourism boating.
Solar Sal Boats is a solar electric boatbuilding manufacturer founded by David Borton a New York based solar boat pioneer. Solar Sal boats was the client for the construction of Solaris, the Hudson River Maritime Museum’s solar electric Coast Guard inspected solar electric passenger vessel.
Elco is a electric yacht and motor manufacturer located in New York. “Combining traditional and proven designs with trailblazing motor and control technology, Elco leads the industry in electric propulsion. Elco outboard and inboard electric and hybrid propulsion systems provide quiet and clean power for those water-based activities.”
Finger Lake Electric Boat is an electric boat company located in the heart of the Finger lakes of New York. Taking over the production of Adirondack Electric Boat that started in the year 2001 they are continuing the production of Adirondack style electric boats. In addition to building the Adirondack style electric boats we are in the process of adding new electric boat models to the Finger Lakes Electric Boat fleet.
Halevai Boats will build renewable energy solutions for the marine industry. We are developing better building materials and methods to build boats. Founded in 2020, Halevai is a new concept boat manufacturer focused on design, reliability and conservation. Our debut craft, the model 2050, was inspired by the goals of the historic COP21 UN climate conference and is the first high performance boat in its category to be fully electric powered.
Scarano Boat Company electric powered canal boat replica. Scarano Boat designs and builds period wood, aluminum, composite, and steel boats, Coast Guard–certified for public transportation and excursions. Scarano Boat has developed a national reputation for modern wood construction. Scarano Boat has found a niche in the production of replica sailing vessels, and certified passenger vessels with classic styling and appointments.
electic catamaran conversion (Rik van Hemmen)
Converting Fossil Fueled recreational boats to hybrid/electric
Instead of developing technologies to replace current recreational boating equipment, some vessels can be “retrofitted,” for a more efficient performance.
For example, in 2015, a small team of researchers successfully converted an 18’ Pursuit 2000 S2 gasoline-powered boat into a hybrid electric boat, or HEB. Specifically, they replaced a nonfunctional Evinrude 225 V6 engine with a battery-powered electric motor.[7] The new eco-friendly design is intended for use in rivers and lakes, primarily. The deep-cycle batteries can be solar charged and powered by a hydrogen fuel cell unit as a bonus.
In 2020, another team followed suit, aiming to “[convert] a traditional internal combustion engine-powered leisure boat into an electric propelled type.” This project also focused on battery power, particularly a Battery Energy Storage System (BESS). This reduces fuel consumption and could potentially save boaters money on refueling.[8]
According to the American Boating Association, “Clean boating and other forms of environmental stewardship (or the lack thereof) has the potential to affect a significant portion of the Nation’s economy.”. Electric propulsion can start to put an end to greenhouse gas production.
student shipwright
6. The Hudson River Maritime Innovation Center, a multiyear proposal: Year one, planning and facility(ies) identification) The Maritime Innovation Center will help the region’s maritime industry adopt new, and traditional maritime technologies, stimulate innovative entrepreneurship, promote knowledge transfer, business incubation, and workforce development to address maritime innovation challenges and opportunities.
The Maritime Innovation Center will provide training for the next generation of shipwrights, longshore and logistics professionals, and mariners, sustain maritime industries, and assist the Hudson Valley region’s ports to modernize and become more climate adaptive, enhance post carbon logistic operations, promote green shipbuilding, and provide good jobs in the marine industry, and key lines of businesses, services, and products.
Vision for the Center: The Hudson Valley will be a hub for resilient maritime businesses by creating a system of innovation that drives productive collaboration among non-profit, industry, academia, and local, county, and state government. Partnering with other maritime enterprises and organizations the Maritime Innovation Center will provide a physical place where professional practitioners, students, and apprentices can participate in theory and practice workshops for teaching and learning new maritime technologies while preserving the skills of the past to serve a carbon constrained future.
Focus: The Center will focus on marine technology, and marine policy. Attendees should expect to spend time on ships and in shipyards in all seasons with the Innovation Center’s business and public partners. The Innovation Center will work to develop authentic activities on and around, ports and the river that create a sense of responsibility to the Hudson River and develop a new generation of maritime advocates, workers, and decision-makers who know how to use their heads, hearts, and hands.
It will be designed to help those who participate discover their interests and passions, not just prepare them for tests. At its core, the is about inspiring personal growth through craftsmanship, community, and maritime tradition. Paraphrasing the title of Transition Town Rob Hopkins’ book, The Hudson River Maritime Innovation Center will be the embodiment of the “Power of Just Doing Stuff.”
Floating Office Rotterdam
Facility, structure, and location: A new or climate adapted historic shoreside building(s), a vessel like the Floating Hospital Ship (Now moored in the Rondout Creek), or a floating facility like the Floating Office Rotterdam will be built, adapted, or restored, and modernized into a LEED-certified, “future proofed,” and environmentally friendly facility. It will include a mix of classrooms and working space for incubators, accelerators, and anchor tenants along with fabrication and event space. The facility will be a “Living Structure” with advanced sustainability and resiliency features.
This center will benefit the region and the maritime community in several ways:
Creating new employment opportunities for young people, and retraining experienced workers in the participating startups and established maritime businesses
Building the region’s status as a center for excellence in the maritime economy in a carbon constrained future.
Elevating awareness of entrepreneurs and stimulating confidence in the maritime industry to create new (and renewed) products and services
Creating new opportunities for established area businesses to develop relationships with early-stage companies
Nurturing the next generation of diverse, inclusive, and representative maritime workforce with technological expertise and access to “green,” living-wage jobs as mariners, ship and boat builders, logistics specialists, welders, woodworkers, riggers, sailmakers, and battery and solar electric propulsion installers, and maintenance techs among others.
There is very little disagreement that EVs/ZEVs are the future of the automobile and light truck industry. Over the lifetime of a ZEV the carbon footprint is significantly less than an internal combustion vehicle. One huge problem given short shrift in the Scope is – what happens to all those ICE vehicles that get traded in? Normally the vehicles whether sold privately or traded into a dealer will be resold and can operate for tens of thousands of miles more with the same or increased emissions. Even if all ICE vehicles are taken out of service in New York by a certain date, those vehicles will be sold in another state or overseas, so there will be no net reduction in emissions for the life of those vehicles.
ICE to EV conversion
Subsidize the ICE to EV,ZEV, alternative fuel conversion business in New York:
Presently ICE to EV conversions are limited to specialty custom businesses for customers with “classic” or “performance” cars, and some kits sold to DIY mechanics. The process can range in price from less than $10 thousand to more than $100 thousand. However, if New York made the decision to subsidize/incentivize new conversion businesses, re/training mechanics, and provide tax credits and other incentives to vehicle owner “first adaptors” that brought the cost down to less than the price of a new ZEV there are several overlapping benefits. Many people like their present cars and light trucks and may resist buying a new, expensive EV that feels, looks, and drives differently than their present vehicle.
Working with NYSERDA, NYSDOT, NYSDEC, NGO’s and other relevant businesses, institutions, and federal agencies initiate demonstration projects:
Municipalities, counties, and state agencies decarbonize their fleets
BOCES training and retraining programs for conversion specialists, for independent mechanics and dealer employees
“Cash” for engines, exhaust systems, fuel tanks, and accessories for more than scrap value.
Computerized supply chain for used and new motors, batteries, brake vacuum pumps, power steering, electric heaters, seat heaters, EV adaptable air conditioning, and regenerative braking systems.
Subsidies and tax advantages for electric motor and battery manufacturers to relocate to New York.
Work with vehicle producers to provide components for conversion, E.g. Ford Lightning parts for Ford ICE pickups.
Incentivize dealers to convert ICE trade ins to EV’s
When we consider emissions from electric school buses, it is important to remember that the population most exposed to diesel school bus emissions are children. Children are especially vulnerable to the health effects of air pollution.
Incentivize fleet operators and car rental businesses to buy conversions or set up conversion facilities
Incentivize farmers to convert diesel tractors and other ICE vehicles to alternative diesel and EVs.
Incentivize police, fire, and emergency departments to convert existing ICE fleets.
Set regulations and standards and train inspectors for both professional and DIY conversions
Prohibit the exportation of functioning ICE vehicles from New York to other States or overseas.
“We wanted to improve social mobility and stimulate the local economy by getting people out and about on the evenings and weekends,” says Allan Alaküla, Head of Tallinn’s EU Office and spokesperson for the scheme.
Surveys conducted by the city in 2010 and in 2011 indicated that ticket costs had become the main barrier to increasing usage of public transport, which was in turn hindering the city’s broader economic development.
Island Transit has been a fare-free bus system since its founding in 1987. You don’t need a ticket, cash, or coins to ride the bus, which makes bus transportation a very easy and convenient way to travel around Island County. Just hop on and go. Bus service is funded through 9 tenths of 1% of Island County’s local sales tax and supplemented by state and federal grants.
Stinger Anderson got hooked on riding the bus after a colleague showed him how. He loves the tradeoffs including more time and money to spend in other ways.
When it comes to improving public transportation in rural areas—flexibility is key. The first step is to provide an easy and efficient way for more people to access public transportation. On-Demand Public transportation, also known as Demand-Responsive Transportation (DRT) provides a way to increase the geographical coverage of a traditional public transit service. This means vehicles can cover a larger service area and reach more passengers. By utilizing DRT technology to improve fleet efficiency and give passengers a way to book public transportation—Councils, Fleet Operators and Transit Agencies in rural communities can easily improve their Public Transportation offering.[vi]
Mass transit is the antidote to climate change,” MTA Chairman and CEO Janno Lieber said at a Midtown press conference, adding that transit avoids putting 17 million metric tons of greenhouse gases into the atmosphere annually (e.g., by keeping people out of cars). Transportation is the second-largest contributor of greenhouse-gas emissions in New York, after buildings.
The MTA now deploys 1,300 hybrid gas-electric buses, 399 of which sometimes operate solely on electric power in an “EV mode.” It pledges to purchase only electric buses by 2029. New York State budgeted $1.1 billion for buying 500 electric buses in the 2020-2024 capital plan. This goal must be ramped up and speeded up and should include all municipal and county transit systems in the State.
In the Portland, OR metro area, TriMet says it has cut its carbon emissions by more than 50% in the last six months by transitioning to renewable diesel and renewable electricity. It’s also trying to grow the number of electric buses in service.
EV buses already have lower comparative lifetime costs than diesel buses and CNG buses, and costs continue to drop rapidly.
Government estimates of zero emission bus prices sharply decline as advances in battery manufacturing and increased demand drive down costs. By 2025an electric bus is expected to cost $480,000, equal to or less than the cost of a new diesel vehicle.
Locked In O&M savings can then be used to expand the EV bus fleet, generating further savings
Electric buses also have substantially lower operating and maintenance (O&M) expenses as compared to their diesel and CNG alternatives. With an electric or hydrogen fuel cell bus, there are no oil changes or emissions tests, fewer parts that can break, and less wear on braking systems. The average lifetime maintenance cost for an electric bus is just $.60/mile.
EV Buses provide significant reductions in tailpipe and greenhouse gas emissions
It is also important to consider where these emission reductions will occur. Transit buses tend to operate in heavily populated urban areas and suburban corridors. Pollution from these sources falls directly upon the surrounding communities and commuters.
Anecdotally there are no electric interstate buses operating in or to and from New York. This provides an additional opportunity to convert diesel and natural gas buses to alternative diesel and EV’s. See Solution 2.
The Germany-based company FlixBus ran an electric bus pilot recently from Seattle to Eugene. The company purchased Greyhound in October, but it has been steadily expanding the U.S. market for intercity travel since it landed here in 2018.
Recommendation 6. Electrification and solarization of freight and passenger trains[vii]
Trains are one of the most efficient and sustainable form of transport. Worldwide around 75% of trains have been electrified, while 25% still use fossil fuels. The bad news is that even electric locomotives use a partially polluting mix. The Council should set specific timetables for the electrification of all commuter and freight trains in New York and calculate the solar and other alternative electric power generation needed to accomplish this.
Continue electrification of diesel branches of commuter rail
Require that electricity be generated from non-fossil fuel sources
Working with NYSERDA provide grants to encourage the development of solar electric[viii] and fuel cell powered commuter and freight trains.
Solarize all commuter rail stations (for trains, EV’s, and E-bikes) and create charging stations at rail maintenance yards.
If electrification is not feasible research the use of hydrogen fuel cells, direct burning of green hydrogen or biogas or biodiesel in diesel/electric train engines and switching modes from rail to maritime. See Recommendation 1.
Although electric bicycles didn’t receive much attention during the COP26— to the chagrin of some sustainability mobility advocates — 2021 was the year they found a more welcoming home around the world. An analysis by Business Research estimated global e-bike sales at $36.5 billion for the year, a compound annual growth rate of more than 12 percent over 2020. Within three years, revenue could reach $53.3 billion, the market research firm predicts.
E-Bikes for commuting and first and first and last mile logistics:
According to calculations touted by a legislative proponent of this idea, California Congressman Jimmy Panetta, if e-bikes handled many short-distance trips — particularly for commuting — currently traveled by cars, it would cut emissions by 12 percent.
While e-bike proponents generally talk up the benefits for individuals and commuters, the format also holds substantial promise when it comes to last-mile delivery, especially in urban environments where tricycles or quadricycles powered by pedal assist/battery could be a practical alternative to trucks and vans.
Commuting, recreation, local shopping, and first and last mile logistics using E-bikes and trikes will have significant public and private benefits:
Improved health
Manufacturing, assembly, maintenance, and sales contribute economic benefits to the communities in which they are located.
Improves over all fuel efficiency
Reduces air pollution if E-bike batteries are charges from alternative power sources.
reduces road congestion
Improves individual and community mobility
Provides a more equitable transportation system
Next steps:
NYSERDA grants and state, county, and municipal subsidies and incentives for the manufacturing, sales, maintenance, and infrastructure for both recreational and commercial uses of E-bikes that include but are not limited to:
BOCES and other training facilities for E-bike builders, repair technicians, and sales.
Incentives for the development of E-bike, motor, and battery manufacturing facilities in New York
Dedicated bike lanes for rural and urban roads
Charging infrastructure and bike rental facilities at rail and bus stations and workplaces.
Employee incentives for use of E-bikes for commuting. Establishing a benefit that lets employers offer bike-commuting workers — those who do it regularly rather than occasionally a per month subsidy.
Higher tolls, congestion pricing, taxes, and incentives for the elimination of large trucks in urban centers
Traffic calming, street narrowing, de-paving, and xeriscaping.
The State working with other government divisions to change zoning to encourage and accommodate more bike friendly development patterns.
Multiple uses of “rail trails:”
Rail trails are primarily used by recreational hikers, bikers, and horseback riders. A multi-use trail could accommodate small commercial E-bikes for cargo during certain hours and with some restrictions.
In many European countries bike paths, particularly in urban areas are shared with trolleys and other mass transit. Even some of our existing rail/trails could be modified to accommodate inter-city trolley traffic along with the current uses safely. The relatively small cost of replacing bridges and the use of self-contained battery electric rubber-tired trolleys would make this feasible. The trails were originally designed for trains with the correct grade.
Recommendation 8: Airships and electric aircraft
Airship
Airships are relatively inexpensive, they can carry a substantial amount of cargo, and they are significantly more environmentally friendly than their heavier-than-air relatives. Once thought to have passed into memory, airships are having something of a renaissance.
Over a decade ago, the International Air Transport Association (IATA) called specifically for cargo operators to embrace dirigibles to meet environmental targets. An airship is estimated to produce 80 to 90% fewer emissions than a conventional aircraft.
• Made of aluminum frames- lightweight, solid, and proven • Vertical take-off and landing • Operates in strong front & cross wind conditions (50 Knots) • Needs NO airport infrastructure/ground crew – operates on any flat space • Burns 80 – 90% less fuel than equivalent aircraft • Flies at 150-220 mph
• Costs 80-90% less than equivalent payload aircraft to purchase and operate • Rivals in cost with truck or rail (point to point) • At least 40 years working life expected
Airship journeys would take around the same time as airplane travel once getting to and from the airport is considered, however they would be a more environmentally friendly option. The airships generate a much smaller carbon footprint than airplanes. The CO2 footprint per passenger on its airship would be about 4.5kg compared with about 53kg via jet plane. Airships are ‘ideally suited to inter-city mobility applications like Seattle to Vancouver or Buffalo to New York City, at a tiny fraction of the emissions of current air options.
With new flexible solar panels made part of the skin of the airship, and new electric motor and lightweight battery technology, not only could airship travel become a part of New York’s transportation infrastructure, but with the appropriate subsidies and incentives, manufacturers could be encouraged to relocate manufacturing to the State.
Half of all global flights are shorter than 500 miles. That’s the sweet spot for electric aircraft. Fewer moving parts, less maintenance, and cheap(er) electricity means costs may fall by more than half to about $150 per hour For airlines, this makes entirely new routes now covered by car and train possible (and profitable) thanks to lower fuel, maintenance, and labor costs.
Electric propulsion nearly solves another problem for aviation: carbon emissions. Aviation emits more than 2% of the world’s CO2 emissions, and it may reach nearly a quarter by mid-century. With no alternative fuel ready to leave the ground, and the number of air passengers set to double by 2035, electricity may offer the industry its best way forward in a climate-constrained world.
Conclusion:
As New York sails into an uncertain, but surely dangerous, climate crisis, we can move steadily away from reliance on increasingly undependable fossil fuels, giant transnational companies, and international finances. We can build energy, food, and economic redundancies into local communities to buffer them against international and national shortages and systems collapses. We can invest in our neighborhoods and our neighbors, working together to create “too small to fail” Main Street businesses, non-profits and local governments that strive in union to serve their communities and the people.
None of this will insure us totally against the dangers ahead, but preparedness will give our state resilience and staying power. By acting now with foresight and hard work, we can care for each other, reinvesting in people and the land, creating a future for the Hudson Valley that emphasizes Earth Care, People Care and Fair Share.
We can create organizational and institutional structures that are sustainable, endowed with ethical values that serve all citizens not only a privileged elite. The emphasis will not be on blind, reckless progress at all cost, but on the creation of an equitable society that avoids resource depletion while fostering slow growth, and most importantly, hope for everyone, including the most vulnerable people and species.
Appendix 1. Low/No Carbon Maritime Resources:
International Windship Association: “The International Windship Association (IWSA) facilitates and promotes wind propulsion for commercial shipping worldwide and brings together all parties in the development of a wind-ship sector to shape industry and government attitudes and policies.”
Fairtransport : For 10 years we have shipped cargo across the Atlantic by the power of the wind alone!
Hudson River Maritime Museum: The Wooden Boat School was founded by the Hudson River Maritime Museum in 2015 to preserve the maritime craft traditions of the Hudson Valley and to teach a hands-on interpretation of the living history of the Hudson River.
Good Work Institute: The Good Work Institute’s mission is to cultivate, connect, and support a network of local community members who are fostering resilience and regeneration in the Hudson Valley.
New Dawn Traders Sail Cargo Alliance: New Dawn Traders is co-creating the Sail Cargo Alliance (SCA) to support a new and growing community interested in shipping ethical cargo under sail. Beyond building viable trade for these sailing vessels, the SCA is committed to setting the highest standards for ethics across the supply chain. This is an alliance of ship owners, brokers, producers and anyone interested in working together in a healthy transport culture.
Drawdown: Project Drawdown gathers and facilitates a broad coalition of researchers, scientists, graduate students, PhDs, post-docs, policy makers, business leaders and activists to assemble and present the best available information on climate solutions in order to describe their beneficial financial, social and environmental impact over the next thirty years.
Low Tech Magazine : Low-tech Magazine questions the blind belief in technological progress, and talks about the potential of past and often forgotten knowledge and technologies when it comes to designing a sustainable society. Interesting possibilities arise when you combine old technology with new knowledge and new materials, or when you apply old concepts and traditional knowledge to modern technology.
Zero Emission Ship Technology Association: Our Mission is to prevent catastrophic climate impacts by assisting commercial shipping to reduce emissions on a steep trajectory.
ECOCLIPPER: We are establishing a professional shipping company that offers emission free transport and travel, by making use of engine-less sailing ships. The start-up crew combines top maritime expertise that is relevant to the sailing cargo industry, decades of experience in business development and sound management expertise.
Sustainable Hudson Valley: Sustainable Hudson Valley’s mission is to speed up, scale up, jazz up and leverage progress against climate change, creating communities where people and nature thrive. With a wide range of partners,
Revolution Rickshaws: Established in 2005, Revolution Rickshaws is a live-electric urban vehicle (LUV) systems & services enterprise based in New York City. Revolution researches, develops, and maintains LUVs in partnership with multiple world-class industry brands including Cycles Maximus, our long-time bikemobile manufacturer and collaborator, to deliver optimal goods and services to market.
Sail Cargo Inc.: Our mission is to prove the value of clean shipping
Eliminating fossil fuels from the maritime sector is achievable by using advanced technology and simple techniques. We combine innovative, clean technologies with readily-available, low-cost, natural systems to create solutions for a range of needs: from supporting vulnerable coastal communities to moving commodities at global scale.
Small-Scale Sail Freight On Coastal And Inland Waters, Author Steven Woods: Sail Freight has slowly worked its way into the realm of sustainability discourse as a way of reducing emissions from transportation, providing logistical solutions using the emissions free power of the wind and technologies proven effective for over 5000 years. This attitude toward Sail Freight and transportation in general has some merits, but none of these discussions seem to have examined the issue of readopting sail freight at scale.
New Age of Sail looks to slash massive maritime carbon emissions: If ocean shipping were a country, it would be the sixth-largest carbon emitter, releasing more CO2 annually than Germany. International shipping accounts for about 2.2% of all global greenhouse gas emissions, according to the U.N. International Maritime Organization.
Industries for Small Communities, Arthur E. Morgan: Morgan’s goal, through his life’s work and in the 1953 publication specifically, was to shift the prevailing mindset regarding small-scale industry. Then, as now, what Morgan termed “bigness” was glorified and small communities were rapidly losing young people to urban centers. Still, he knew that small businesses existed across the country, and that the communities that housed them could be vibrant and fulfilling places to live.
Appendix 2. Eriemax and Electric Clipper
Eriemax, 80’ canal, river, and coastal sail freighter, Geoff Uttmark design
Electric Clipper, 180-200’ short sea and trans-oceanic sail freighter, Derek Ellard design
[1] Astroturfing is the practice of masking the sponsors of a message or organization (e.g., political, advertising, religious or public relations) to make it appear as though it originates from and is supported by grassroots participants.
[2] The Council on behalf of the State must admit culpability. The For the last fifty years the State of New York, the Governors, departments, the legislature, and its congressional representatives have had ample information, data, and scientific evidence of the impacts of a changing climate on the environment of New York, including but not limited to the impacts of subsidies for road building over rail, urban sprawl, air and water pollution, and squandering of opportunities to mitigate or begin to adapt to the climate crisis that has been exacerbated by transportation policy and actions.
[4]The M-87 Route is the Hudson River, connecting commercial navigation channels such as the Erie Canal, ports, and harbors from New York City to Albany, NY. It spans eastern New York State. It connects to the M-90 Route at Albany, NY and the M-95 Route at New York City.
[5] MARAD defines a small port as a coastal seaport, Great Lakes, or inland river port to and from which the average annual tonnage of cargo handled during the 3 calendar years immediately preceding the time of application is less than 8,000,000 short tons.
[7] Yildiz, F., Coogler, K. L., & Amador, R. (2015). Conversion of a gasoline powered boat to a hybrid electric boat. Journal of Engineering Technology, 32(1), 52-63. https://www.proquest.com/openview/cfd13c6dbb26ed0fdebc07560b680916/1?pq-origsite=gscholar&cbl=32062
[8] Caprara, G., Martirano, L., & Balleta, C. (2020, June). Preliminary analysis of the conversion of a leisure boat into a battery electric vehicle (BEV). IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/9160492
Looking forward rationally at all the indicators, the “business as usual” choice takes us down a road to cataclysmic food and energy shortages, transportation disruption, infrastructure failure, inundation from sea level rise, financial meltdowns and its attendant social disarray.
Possible response strategies:
Denial/blissful ignorance
Last One Standing/anger, blame, war for food and natural resources
The Center will house a traditional knowledge data base, library, and a pre/post carbon tool, technology, and machinery collection. This activity is an ambitious effort to preserve, restore and promote the re-use of traditional skills.
Movement Building, advocacy:
The Center promotes maritime, and first and last mile technology necessary for moving goods and people from place to place in a carbon constrained future.
The Center is an advocate for existing and emerging low carbon shipping and post carbon transportation businesses and organizations.
The Center is an advocate for appropriately sized working waterfronts in small to mid-sized ports throughout the the Hudson Valley, NY Harbor, Canals, and the Atlantic Coast.
The Center advocates for a transition that people will embrace as a collective adventure, as a common journey, as something positive. Paraphrasing the title of Transition Town Rob Hopkins’ book, The Center for Post Carbon Logistics will be the embodiment of the “Power of Just Doing Stuff.”
Train, individuals and organizations:
Partnering with other enterprises and organizations The Center will provide a physical place where professional practitioners and apprentices can participate in theory and practice workshops for preserving the skills of the past to serve the future
The Center will host regional, national, and international conferences on post carbon logistics, traditional skills, and sail freight
The Center will provide educational opportunities and creative, implementable, real world solutions to the 21st century environmental, economic, and social crises enabling people to work locally to transition our communities and bio-region away from a fossil fuel-based economy to a “restorative economy,” one that is human-scaled, embraces alternative locally based energy, and that is less extractive.
In April 2022 the US Department of State put out a Fact Sheet, Green Shipping Corridors. That said in part:
In support of the effort to achieve global net-zero greenhouse gas emissions by no later than 2050, and in support of the effort to achieve zero greenhouse gas emissions from the international shipping sector by the same year, the United States is charting a course to advance domestic and international green shipping corridors.
[iii] This PC3PL providers is a vital part of maritime based supply chain management.
Procurement: ordering and receiving goods from purveyors in the supply chain.
Order fulfillment and Consolidation: Receiving an order from customers and arranging for the orders to be completed and shipped.[iii] PC3PL will combine goods from multiple shipments into one shipment so they can be transported together.
Storage: Providing temporary storage for goods in warehouses or similar facilities.
Transportation and Distribution:[iii] Arranging for consolidation, management, and transportation of goods from the producer, to the first and last mile provider, drayage[iii] to and from a temporary storage or warehouse to the water-based transport of goods and point of destination.
Moving goods between methods of transport
To support this new logistics model certain data, need to be collected and analyzed based on previous and anticipated activities, this information includes but is not limited to:
PC3PL will also offer a range of supplementary services including IT, inventory management, and reverse logistics,[iii] and tracking of goods using GPS and Internet of Things (IoT) devices
[iv]The Marine Byways and Resilient Small Port Toolkit products will include but not be limited to:
A compendium of pier/dock/bulkhead and navigation conditions, using field checks, existing and new photographs, and satellite images
A review of New York City’s “Delivering Green” Plan to determine the location of appropriately sized small ship docks and piers, and accessibility for low/no carbon first and last mile logistics providers.
Make available, existing and newly created GIS maps and charts of small and medium sized ports throughout the M-87 Marine Highway System for the use of mariners and port operators
port gazetteers[iv]
Financing for port improvements
Guidance for local communities to develop working waterfront zoning, deed restrictions, and easements
links to sustainability and resilience resources.
links to local and regional naval architects, shipbuilders, and boat yards, as a resource for sail cargo and solar ferry entrepreneurs and public agencies with an interest in low/no carbon water transport of goods and people.
A compendium of local, state, and federal agencies and what assistance they offer, and sources of funding for:
planning assistance for small port improvements for low/no carbon commercial freight and passenger vessels.
financial and port and docking information gathered by the Schooner Apollonia’s multi-port cargo operation,
interviews with local, county, state, and federal transportation, and economic development agency officials,
materials developed by non-governmental organizations,
navigation, port, and logistics information from contemporary and historic sources (including the Hudson River Maritime Museum Collections)
Interviews with farmers, food processors, brewers, distillers, and small local manufacturers, makers, and logistics providers
interviews with local, county, state, and federal transportation, agriculture, and economic development officials,
materials developed by non-governmental organizations,
navigation, port, and logistics information from contemporary and historic sources
[vi] DRT a form of shared private or quasi-public transport for groups traveling where vehicles alter their routes each journey based on particular transport demand without using a fixed route or timetabled journeys. These vehicles typically pick-up and drop-off passengers in locations according to passengers needs and can include taxis, buses or other vehicles.
One of the most widespread types of demand-responsive transport (DRT) is to provide a public transport service in areas of low passenger demand where a regular bus service is not considered to be financially viable, such as rural and peri-urban areas.
Though trains are more efficient than trucks, not all trains are equally efficient. Diesel-powered trains transfer about 30-35 percent of the energy generated by combustion to the wheels, while supplying electricity directly from an overhead powerline transfer about 95 percent of the energy to the wheels. Powering trains with electricity rather than diesel has several other benefits.
While prices of diesel fuel are currently low, many analysts predict that the long-term trend is for those prices to increase. Conversely, prices of electricity are falling with the fast-growing use of renewable energy sources. Even at current prices, with the energy conversion rates mentioned above, it is estimated that it is 50 percent less expensive to power a train by electricity than by diesel.
The cost of electric locomotive engines is about 20 percent less than diesel locomotive engines on the global market, and maintenance costs are 25-35 percent less than for diesel engines.
Eliminating diesel-powered locomotives would reduce air pollution including soot, volatile organic compounds, nitrogen oxides, and sulfur oxides, all of which affect public health as well as the environment. This is especially important as many railroads pass through urban areas. It would also reduce noise levels in cities, as well as traffic deaths due to trucks (rail freight causes only about one-eighth as many fatalities as truck freight per ton-mile).
Switching from diesel to electricity would also help address the challenge of replacing petroleum-based liquid transportation fuels with cleaner alternatives as we seek to lower our greenhouse gas emissions.
In research focused on providing solar power to electric trains, it is enlightening how efficient this transportation mode can really be. Electric trains are 50 percent to 75 percent less polluting than single-passenger cars and trucks and use comparably less energy per passenger-mile, according to a 2009 detailed analysis by Chester and Horvath.
Electric trains are so efficient that a single 300-watt solar panel (about 4×6 feet) can provide up to 7,000 miles of an individual’s commuting miles per year, or 5 to 20 miles per day. The national average, based on National Transportation Database data on the efficiency of the various U.S. electric train systems, is about 4,000 miles per year for each 300-watt solar panel. One mile of train tracks can support 1 megawatt to 3 megawatts of solar panels, which can provide 2 million and 6 million passenger-miles of train travel.
Wind power is another obvious option for powering electric trains with on-site renewables — where there are strong wind resources. Distributed wind has not taken off in the U.S. anywhere near to the degree that distributed solar has, but it could be a viable option in many circumstances, particularly where there are state rebates to offset the cost of wind turbines. Wind power in desirable locations is still cheaper than power from solar panels and can also complement solar power by producing power at night.
Locally built, from locally sourced and recycled materials, crewed with locally trained mariners, home ported along the Hudson, the Harbor, and the canals, carrying locally grown, locally processed, and locally manufactured goods – with liberty from fossil fuels, these future proof ships will be a positive disruption to the status quo.
Future Proof Liberty Ships — Brutally Simple
WW II Liberty Ship
Liberty ships were a class of cargo ships built in the United States during World War II The design was adopted by the United States for its simple, low-cost construction. Mass-produced on an unprecedented scale, the Liberty ship came to symbolize U.S. wartime industrial output. The immensity of the effort, the number of ships built, the role of women and minority shipwrights in their construction, and the survival of some far longer than their original five-year design life are a testament to what is possible to do when confronted with an emergency. At the peak of production yards were turning out 2-3 ships a day with a 40-day build time.
To meet the emergent climate crisis, and to confront the immense carbon pollution of the existing fossil fueled international and domestic fleet, “future proof” Liberty from Fossil Fuel Ships will be built in US yards to enable us to continue the movement of goods and people from place to place in a carbon constrained future.
These ships will be brutally simple, but elegant, built by aa new generation of shipwrights to kick start the revival of US flagged ships in international and domestic trade. Using proven construction techniques and tried and true (as well as innovative) sail propulsion/electric propulsion technology these “flagships of the future” will be the first steps in adapting to and mitigating the climate crisis, that in significant part is caused by international and domestic shipping.
Why These Ships and Why Now?
Polluting Ship
The international shipping industry is one of the largest greenhouse gas emitters. If the maritime sector were a country, it would be one of the top six carbon polluters. The shipping industry has been reluctant to take unilateral leadership on emissions. The International Maritime Organization (IMO) is puttering around the edges. It recently declined to make a greenhouse gas reduction plan or commitment.
The Center for Post Carbon Logistics (C4PCL), along with a local, regional, and international coalition posit an alternative. That alternative is disruptive competition from an emerging suite of technologies – hydrogen, solar, and wind/sail powered shipping on New York waterways. Water-borne shipping, even now, is dramatically more energy-efficient than its land-based counterpart. New York, with its network of waterways connecting the Great Lakes to the Hudson, to New York Harbor, and the ocean, has a leadership opportunity in growing this industry.
In New York, achieving the State Climate Act’s goals will require addressing the enormous footprint of transporting goods and people from place to place using fossil fuels. Building Future Proof Liberty ships in New York Hudson River shipyards is the first step toward a regenerative shipping industry on New York’s canals, the Hudson River, The Harbor, the East Coast, Caribbean, and transatlantic routes.
The Hudson River, a Water Highway
Not so long ago the Hudson River was a bustling highway linking even the smallest communities to a web of regularly scheduled commercial routes. Schooners, sloops, barges, and (much later) steamboats provided a unique way of life for early river town inhabitants. Farmers, merchants, and oystermen relied on this vibrant and diverse fleet of vessels to bring in supplies and deliver their goods to market. This arm-of-the-sea was an integral part of the lives of those who worked New York’s inland waters.
Sloops at Anthon’s Nose
The Hudson River sloop was the main means of transportation on the Hudson River from the early days of Dutch settlement in the 17th century (1600s) until the advent of the steamboat. Based on a Dutch design, this single-masted sailboat carried passengers and cargoes up and
Hudson River Sloop Clearwater Ferry Sloop Woody Guthrie
The legacy of these sailing cargo vessels continues in the iconic Sloop Clearwater and the organization that supports it. The “Ferry Sloop” Woody Guthrie is another example of both the historic nature of those ships and the skills that it takes to sail, maintain, and rebuild when necessary. A complete rebuild of the Woody Guthrie, and three restorations of Clearwater were performed at the shipyard at the Hudson River Maritime Museum, in the last few years, by Rondout Woodworking in conjunction with the Museum’s Wooden Boat School staff and volunteers
Precursors, Prototypes, and Disruptors
Vermont Sail Freight, the Vessel Ceres,
“Contrary to the techno-paradise that some expect, my belief is that our future will likely resemble our past, and that we may fall back on proven, low energy approaches to supporting human life that have been historically proven to work. “Isn’t that pessimistic?” asked the interviewer. I replied that I don’t think so. It is in my view even more pessimistic to imagine a world continuing on the current path, becoming a place in which there is no place for human labor or creativity, where rather than doing things with our backs and hands and minds, we must instead wait passively for conveniences and solutions to be marketed to us. That, to me, is the most depressing future imaginable.” — Erik Andrus Founder the Vermont Sail Freight Project
Vermont Sail Freight Vessel Ceres
While others were writing and talking about reviving sail freight on the Hudson and the Canals, Erik Andrus, a Vermont Rice farmer was building a sailing freight barge. Erik sells baked goods produced on the farm at farmers markets in the Vermont communities adjacent to Lake Champlain and realized that he was delivering the locally produced organic and farm baked goods in a fossil fuel truck. He immediately began to research horse drawn bread trucks and built one.
Taking this idea to the next stage, he envisioned floating his and his neighbors farm goods down the Hudson on rafts until he researched the difficulties of doing so and conceived of the Vermont Sail Freight Project. Beginning in 2012, the Vermont Sail Freight volunteers, led by Erik, designed, and built a 15-ton capacity sailing barge and raised funds for her construction from grants, donations, and pre-sale of cargo items. The Ceres was launched on July 27, 2013 and was ready to journey downriver with cargo in October 2013. This was made possible in part by the participation of Greenhorns, USA and by the support of the Eastman and Waterwheel Foundations. In October 2013, $56,000 worth of products from small farms in the north were delivered and distributed along the Champlain-Hudson waterway at farmers’ markets and through events and wholesale accounts. Although Ceres’ last voyage was in 2014 its legacy and Erik’s vision is the foundation on which moving goods and people in a carbon constrained future will be built.
Eriemax
In 2011 two cities on the Erie / NYS Barge Canal were among U.S communities that lost the most population the previous decade. Naval architect, Geoff Uttmark’s NYSERDA funded Eriemaxship design and HEFTTCo. business plan was developed ” to stimulate growth by creating a green, lower cost trade route using ship-kit, electric powered, owner-operated small freight ships.”
Although the ship itself was not built, the rigorous analysis, of the cost of building, cargo handling, crewing, and port infrastructure requirements, are still viable models for the evaluation of wind and alternative fuel cargo carrying on the Hudson, and Canals.
Uttmark’s Ship Shares initiative is a comprehensive conduit for maritime development, education, networking, and support of not-for-profits inspiring tomorrow’s marine industry leaders.
ERiemax HEFTCO Business Plan Summary
“Our Vision is to lead impact investing in the marine shipping space. We do this by leading or joining design of seaborne transport initiatives that have strong social and environmental merit in addition to positive traditional financial metrics, and by research, design and identification of potential “game-changer” technologies that can span multiple shipping sectors. Our emphasis in all endeavors is to advance local or regional social benefit projects or disruptive technologies with world-class expertise and world-wide capital to maximize the impact of invested human and financial resources.”
The Schooner Apollonia and the Solar Electric Solaris
The Schooner Apollonia is engaged in commerce under sail on the Hudson River and New York Harbor.
Schooner Apollonia
Apollonia is a 64-foot steel-hulled schooner built in Baltimore, MD in 1946. She is designed to move efficiently through the water, powered by a traditional gaff-rig sail plan designed by naval architect J Murray Watts. With a 15’ beam and rugged steel construction, she’s a stout work boat capable of carrying 20,000 lbs. of cargo. Being a schooner, the crew requirements are smaller, and the variety of sails gives us flexibility for different conditions that we will encounter on the river.
On her most recent trip to New York City from Hudson, she carried a mixed load of cargo including bags of grains and malted barley for breweries along the River. When access to a dock was limited, cargo bikes were used for “last mile logistics.” On her return trip she carried a variety of French wines and chocolates cross docked from the ocean sailing freighter Grain de Sail during a meet up in Brooklyn. Securing funds for needed upgrades, and financial stability is a primary goal of the Liberty from Fossil Fuel Ships initiative.
The Hudson River Maritime Museum’s solar electric Coast Guard inspected passenger vessel Solaris has proven its seaworthiness and efficacy over the last three seasons. Solaris is a classic “launch” design adapted to her 21st century solar electric propulsion system. Solaris is a pioneering example of near future ferries, larger passenger vessels, and self-propelled canal barges. Conceived of by David Borton, designed by Dave Gerr, and built by Rondout Woodworking at the Wooden Boat School, she is the working prototype for a class of solar electric commercial vessels.
Solar Electric Passenger Vessel Solaris
The Hudson River Maritime Museum recently received a grant to build a dock in Rhinecliff, NY’s Amtrak train station to begin a ferry service to Kingston and The new State Park in North Kingston. Support for Solaris’ maintenance and financial security is also a priority of the Liberty from Fossil Fuel Ships Initiative.
Liberty from Fossil Fuel Ship Prototypes
Five prototypes are proposed to be R&D’d, designed, financed, and built in Hudson Valley, NY shipyards: examples include, but are not limited to, a 180′ “short sea,” coastal, transatlantic, and/or Caribbean electric clipper, a 65′ river and coastal Sharpie Schooner, a “39′-45′ pick up of the sea,” “Eriemax” 80′ River, Canal, and Coastal Sail Freighter, and a solar electric canal barge.
180’Electric Clipper
65’Sharpie Schooner
39′ – 45′ “pickup of the sea”Eriemax 80′ River, Canal, and Coastal Sail/Electric Freighter Geoff Uttmark design Solar Electric Canal Barge
Look for Blog Posts and Articles on R & D, design, financing, and building these prototypes and a March 2022 Sail Freight Conference at the Hudson River Maritime Museum.
A Post Carbon Gateway to the Hudson Valley and the World
A Comprehensive Plan for a Working Waterfront and the Transportation of Goods and Peoplein a Carbon Constrained Future
Summary:
Rondout Riverport 2040 proposes a pragmatic, positive, and prosperous vision for the near future in which the communities of Kingston and Esopus are enriched by a transformed port, boasting a shoreline synergy of leading-edge maritime commerce and working waterfront technologies that profit and engage individuals, businesses and communities, allowing for an equitable transition beyond fossil fuels, as together we forge a vital and vibrant economic bond with the greater Hudson Valley Bioregion.
Over the next twenty years, Rondout Riverport 2040 offers the communities of Kingston and Esopus an extraordinary opportunity and vision for remaking and transforming the Rondout Creek and Hudson River Working Waterfront.
Rondout Riverport 2040 provides a trailblazing and sustainable development template for our community, harnessing and enhancing our region’s widely shared prosperity, even as we enter into an economically demanding carbon-constrained future.
The Riverport in 2040, as envisioned here, will offer far more capacity, while being significantly more compact in land area, more robust, and resilient than the current patchwork of diffuse land uses found on today’s waterfront. The core mission of tomorrow’s port is the post carbon maritime transport of goods and people up and down the Hudson River and beyond. The Riverport, as imagined here, is designed to attract shipping, distribution, commerce, hospitality, and craft businesses, creating a dynamic collaboration and nexus for optimized local and regional market productivity. The result: an economically, culturally and environmentally resilient post carbon working waterfront — a gateway to the Hudson Valley and world.
Think of Rondout Riverport 2040 as a signature project benefiting from the creative contributions of its many partner organizations, local governments, and institutions to address and transcend the near future threats of sea level rise; increasingly turbulent extreme weather events; and unexpected global, national and regional economic shocks. The port’s versatility will depend on the linking of its economic opportunities with environmental restoration and sustainable commerce. Embracing this multi-generational project will also be a source of inspiration for broader long-term action on climate change.
We can best accomplish these visionary waterfront goals via an integrated “placemaking” approach. Placemaking provides a method for answering critical questions: What are the best ways to mobilize and coordinate our many community assets? How do we effectively draw on public and private partnerships to creatively identify opportunities? How can we successfully coordinate our implementation efforts? And where do we find the resources needed to accomplish our vision for a transformed riverport?
We don’t have to wait until 2040 to start benefiting. Communities can begin now, as they participate in a vigorous planning process, while taking key steps for future proofing our shoreline against the harms threatened by a more politically, economically, and environmentally chaotic planet in a post-carbon future. The path to a bright, sustainable future starts with community engagement and data collection to build an actionable vision for the Rondout Riverport, a vision that incorporates a proud sense of community and place, local stewardship, and widely shared economic opportunity. The choice is ours.
A Vision for Rondout Riverport Working Waterfront, circa 2040
Imagine: It is a hot, late autumn day along the Hudson in 2040. From the rooftop of a trading house in Kingston, a ship spotter sees the topmast of a large sloop. The sloop signals a waiting solar tug, the Augustin Mouchot, which tows the engineless sailing ship toward a berth in the newly completed Rondout Riverport Inner Harbor.
The sloop, the Pete Seeger, is loaded with high-value cargo from abroad, transferred in New York Harbor from the oceangoing post carbon Eco-Clipper, Jorne Langelaan. The mixed freight consists of Caribbean fair-trade coffee and cocoa beans bound for the Hudson Valley’s roasters and chocolatiers, along with preserved tropical fruits and rum destined for local Kingston stores. The Seeger’s crew put a harbor furl on the hemp cloth sails, even as other crew members ready the on-board cargo gear. The sailors open hatches and set up the onboard cargo boom which will do most of the heavy lifting. The crew can also access the harbor’s floating cargo cranes for heavier or bulkier freight.
These locally trained young seafarers are in good spirits, looking forward to spending some time ashore, and to a few drinks of locally made brew, cider, and spirits. Like any sailors, they are also hungry and ready for a good meal at a tavern — the local fare includes dishes harvested from the Hudson’s new artisan fishery and from oyster beds seeded in shallows created by former piers and abandoned roads, submerged downriver over the last 20 years due to climate change’s rising seas and increasing river levels. After dinner the sailors walk along the sea-life-encrusted seawall, built from repurposed concrete and stone from former waterfront byways, buildings, and piers inundated by the Hudson’s rising waters.
A longshore crew, warehouse workers, drovers and their electric-assist people-powered tricycles and wagons converge at the waterfront’s new storm-proofed floating dock — which rises and falls with surging tides. Cargo surveyors assist with the unloading of the coastal Schooner, Sam Merrett down from Maine with a load of lobsters. The square foremast tops’le Schooner Kevin Kerr Jones is unloading citrus from Savannah. Other stevedores are loading the solar electric Feeney shipyard built canal barge David Borton, bound for ports up the Hudson River with a final destination at Buffalo. Some smaller solar barges are loading for Port Jervis, then on to the newly opened Delaware and Hudson Canal.
The (s)low tech Rondout Riverport is modern and efficient. The port is no longer dependent on prohibitively expensive fossil fuels, nor the notoriously unreliable overseas energy supply chain. Instead, Roundout makes the best use of old and new — tried and true 19th century technology blended seamlessly with 21st century solar and battery electric gear and vehicles. More people are at work today on the waterfront than at any time since the 1920s; there are more warehouses and trading houses, shipbuilding, repair facilities, and docking facilities than at any time in the Rondout’s nautical history.
Bronze foundry
Just behind the waterfront are coopers using sustainably harvested local oak, sail and ropemakers utilizing New York hemp; forges and foundries use concentrated solar heat to form bronze fittings. Riggers are hard at work in ropewalks making running rigging and dock lines to equip the numerous commercial and recreational sailing ships and boats. Dry docks and shipyards look out on bikeways and walkways circumscribing the tidal flats, from which hundreds of locals and tourists observe the port activity, safe in the knowledge that food and goods continue to pour into a port that — thanks to good planning 20 years ago — is well adapted to keep pace with a changing climate and evolving post carbon economy. All of this could be, if only we take a can-do proactive approach toward tomorrow.
Slar Canal Boat
Reinvigorated Waterways
The Foundation of a Resilience Strategy
Contrary to the techno-paradise that some expect, my belief is that our future will likely resemble our past, and that we may fall back on proven, low energy approaches to supporting human life that have been historically proven to work. “Isn’t that pessimistic?” asked the interviewer. I replied that I don’t think so. It is in my view even more pessimistic to imagine a world continuing on the current path, becoming a place in which there is no place for human labor or creativity, where rather than doing things with our backs and hands and minds, we must instead wait passively for conveniences and solutions to be marketed to us. That, to me, is the most depressing future imaginable. — Erik Andrus Founder the Vermont Sail Freight Project
Not so long ago, in the 19th and early 20th centuries, the Hudson River bustled with commerce and lay at the heart of a thriving network of marine highways linking the large cities and smallest communities to a web of regularly scheduled transportation routes — waterways stretching from the Atlantic west to the Great Lakes. Boats of all sizes served local cargo and passenger needs: schooners, sloops, barges, and steamboats connected river town inhabitants. Farmers, merchants, and oystermen relied on this vibrant and diverse fleet to deliver goods to market and to bring back supplies. The Hudson River — and the ships and boats sailing her — were vital and integral to those who worked, lived and thrived along our inland waters, putting places like Kingston and Esopus on the map. Historically, thousands of vessels plied these marine highways, sailing up and down the Hudson Valley, delivering fresh local farm produce ranging from apples to applejack, fish and shellfish, and carrying passengers to ports along the way
View near Anthony’s nose
The Kingston and Esopus’ Rondout Creek and Hudson River Working Waterfront has long been a key contributor to our region’s financial wellbeing — though it could be so much more. Now, as we enter a carbon constrained future our Riverport is poised for rebirth, to again become a key regional hub for the transport of goods and people. As we move into a world facing increasingly tough political, economic, and environmental challenges, we must ask ourselves: How shall we, living beside the Hudson River, meet the looming threats of climate change, rising sea level, aging infrastructure, changes to global shipping patterns, threats to food security, upheavals in energy production and distribution, and the risks all these disruptions could bring? As in the 19th and 20th centuries, the answer to those questions, and the solutions to our problems lie only as far away as the lapping waters of our home river.
NOAA Sea Level Rise Rondout Creek
This proposal, Rondout Riverport 2040; A Comprehensive Waterfront Plan for a Working Waterfront and Transportation of Goods and People, offers a pragmatic look forward to what — with proper preparation, cooperation and investment — could result in a revitalized and highly profitable Rondout Riverport at mid-century. This plan provides a practical salient vision of resilient shorelines and a working waterfront, redesigned to protect our community from sea level rise and storm surges, built to accommodate a wide spectrum of business, cultural and social uses that will benefit our communities and the Hudson Valley Bioregion. This, to put it simply, is a waterfront proposal that “floats all boats,” promising equity and prosperity for our citizens, large and small industries, investors, entrepreneurs, craftspeople, environmentalists, boatmen and women, dreamers and doers.
But here is a warning: An optimistic future depends on our will to make it so. If we pursue politics and policy as usual, we could face a grim tomorrow as our region is hobbled by climate change: Abandoned, flooded, moldering shoreside buildings and piers; low-lying and failing sewage treatment plants and electric utilities; eco-refugees crowding our upstate communities seeking limited food and shelter; and a polluted, dead estuary as oil and chemical plants are inundated. Despite sincere efforts at incremental change and adaptation planning, without visionary action right now, our region could face a dire tomorrow marked by rising water and plummeting economic fortunes. The choice remains ours.
The reality of escalating climate change makes clear that we must redesign our economies if we are to maintain quality of life in a carbon constrained future. A major opportunity offers itself: to take advantage of our wealth in waterways and return to our bioregion’s nautical roots and pioneer a new industry grounded in tried and true technology that once drove our economy: low/no carbon shipping and post carbon transportation businesses and organizations.
In the New York City metro area today, 80% of freight transport is carried by truck, a mode of transportation that is congesting our highways, increasing air pollution, and entirely dependent on fossil fuels. In a carbon constrained future, sustainable water transport (an innovative mix of sailing vessels, hybrid/fossil fuel free electric ships, and people/electric powered transport) will almost certainly be a necessity. As the climate crisis deepens, water-based transportation routes can link communities and promote resilience throughout the Hudson Valley — doing so without congestion, without pollution, while being energy efficient, non-dependent on increasingly expensive fossil fuels, and very profitable.
Water-based transportation — once ubiquitous on the Hudson — is just about the only form of transportation, other than the bicycle, that requires little or no roadway maintenance. Navigation channels are less costly than roads to keep up; they do not require a large industrial base, and are far less energy-intensive than alternatives.
And you needn’t look far for proof: The 363-mile-long Erie Canal system, linking the Atlantic Ocean with the Great Lakes, has been continuously operational since 1825. The cost of keeping it running is tiny compared to that of equivalent highway mileage. The Hudson and its linked waterways comprise the greatest set of transportation assets in the world — assets greatly underutilized today. Those water blue highways will see their status grow in a post carbon world, and communities along them will prosper as a result. Kingson and Esopus are two such communities. The Rondout Riverport is strategically located to be part of this great renaissance: located just ninety miles from one of the greatest ice-free harbors on earth; and sixty miles from the entrance to the Erie Canal.
But to make this opportunity a reality, Riverport infrastructure must be created to increase capacity, while being nimble enough to respond to rising sea and river levels and worsening storm surges, as well as shifting economic tides. The port will also need to be made accessible to smaller, more numerous vessels on a protected and restored working waterfront. To thrive as a maritime and commercial center in a carbon constrained era, Rondout Riverport’s infrastructure must include:
Charging stations for electric and electric hybrid vessels, flood-proof storage and production facilities for biofuels like methane (produced by sewage treatment plants), biodiesel (from restaurants’ used fryer fat), and hydrogen (created from seawater while sailing vessels are underway);
A flood proofed waterfront and flood proofed warehouses and trading houses;[1]
Across-docking facilities for transfer of goods from ship-to-ship and from ship to first and-last-mile providers (i.e. small sailing, rowing, hybrid vessels as well as people/electric powered commercial trikes and wagons);
Access to innovative training facilities to provide a labor force: the new traders, river rovers, seafarers and port workers. This labor force will need training based on models for “preserving the tools and skills of the past to serve the future.”
Pre-carbon Working Waterfront
Rondout Riverport will not stand alone, but will be integrated into the greater Hudson Valley Bioregion, along with the wider Northeast and U.S. transportation and distribution system, with which it will engage collectively and creatively to unleash an extraordinary, historic transition to a future beyond fossil fuels; a future that is vibrant, abundant, resilient, and ultimately preferable, more equitable, and more economically viable than the current model.
Rondout Riverport 2040 will serve as an empowering example to our bioregion and our country — demonstrating the viability of ethical livelihoods and teaching beneficial sustainable technologies that do minimal socio-environmental harm; methodologies that foster self-reliance and promote Slow Tech hands-on work practices.
The result: entrepreneurs, professionals, technicians, craftspeople, academics and students from across our bioregion, and across the United States, will be drawn to our state-of-the-art waterfront — gathering here to learn from each other. Our waterfront will be like no other in our region, or maybe in the nation: Becoming a living laboratory, cultivating not only practical and sustainable energy, commerce and transportation solutions, but generating a flow of fresh, pathfinding ideas.
To bring these advanced infrastructure changes about — working with partners throughout the region — we will need to establish:
Street of Ships
A new binding agreement with the region’s farmers and farm advocacy organizations in our “foodshed” that offers subsidized support of infrastructure including, but not limited to:
Full employment in year-round growing season zero carbon greenhouses;
First and last mile transportation of agricultural products to processors and the waterfront (using existing and new rail-trails as bike/trike corridors);
Solar powered cold storage at critical locations;
Year-round indoor farm markets.
An inter-port agreement with small and mid-sized ports along the Hudson River, the Erie, and Champlain Canals, and New York Harbor:
This agreement would include the sharing of information on resilience and “future proofing” of all waterfronts;
Establish a Sustainable Working Waterfront Toolkit — making available the historical and current uses and economics of New York’s waterfronts as a resource. The toolkit must include legal, policy, and financing tools that river ports and waterfront communities can tap into to preserve and enhance local and regional port facilities.
The Hunts Point Market and Fish Market must be made accessible to small ships, delivering farm goods from upstate and returning with seafood from the Market;
A new agreement with transport unions that allows ships to load and unload with their own equipment. Local industry will need to work in close conjunction with the unions to hire and train more people for post carbon longshore work;
A partnership with the region’s Maritime Academies, the Hudson River Maritime Museum’s Wooden Boat School, and the Harbor School to train mariners, and to teach the logistics careers required to serve the new post carbon working waterfront; with the ultimate goal being the creation of an education center in the mid-Hudson Valley where professional practitioners and apprentices can participate in practical workshops to relearn maritime and other heritage skills and old-new technology to serve present and future needs;
An endowment for the preservation and utilization of traditional maritime skills and tools, the establishment of a traditional knowledge database/Wiki; library; and pre/post carbon tool, technology and machinery collection. This innovative interactive educational resource serves to preserve, restore, and promote the re-use of traditional skills, integrating those skills and methods with modern know-how and appropriate post carbon technologies;
Create maritime mixed-use zones where public parks, walkways and bikeways are built in flood zones and are adjacent to and part of the working waterfront — acting as a source of recreation and as a vital part of flood control;
Advocate for a reduced, less intrusive regulatory role for the US Army Corps of Engineers. Instead, encourage Corps funding be channeled into partnerships with other agencies, local non-profit organizations, and an engaged public in order to develop, and redevelop climate change-resistant and resilient Hudson River Ports, and to create living shorelines, restored wetlands, and estuarine habitats.
Through this diversity and synergy of uses, Rondout Riverport’s working waterfront will also:
Create jobs in sailing, logistics, shipbuilding, harbor maintenance, craft, food production and more;
Revitalize the waterfront community via economic development combined with better public access and recreation;
Improve regional food production and distribution, linking producers to markets in the Hudson Valley and beyond.
Design and build a maritime commerce micro-hub for, aggregation, warehousing, co- packing, and marketing.
Rondout Riverport will be the homeport for future-proof sailing, alternative fuel, and solar electric ships. It will provide training in maritime skills, shipbuilding, and longshore trades, while also educating crews in “earth care, people care, and fair share” principles. These future-proof ships and their locally trained crews will carry people, goods, and knowledge to and from towns along the Hudson and on the canals.
As Rondout Riverport becomes the working waterfront of tomorrow, the constraints and advantages of smaller and (s)lower tech modes of transport must be considered in every aspect of the port’s design. Historic and modern technologies must meld seamlessly to offer approaches that are more self-sufficient and sustainable. Just one example: ships of all sorts, meeting a variety of needs, will have to be built (and rebuilt) locally, from locally sourced or recycled materials, and be crewed by locally trained seafarers, in order to adjust to declines in these resources globally, declines brought on by a combined climate and economic crisis and social upheaval abroad. These new vessels will likely be different than the ones we build today; smaller, more versatile, adaptable, energy-smart, and affordable.
As fossil fuels become more expensive or less available, replaced by alternative sources, and are restricted by climate change policy — port infrastructure will need to be part of a carbon neutral trading network for “short sea shipping” that links us to the region and the world, serving the Hudson Valley, the New York/New Jersey Harbor, Coastal waterways, and transfer points for goods from overseas.
Moreover, the Roundout Riverport will be well positioned to become a laboratory for maritime innovation, as public agencies and private companies accelerate their investigations of the potential economic and environmental benefits of transferring more cargo from roadways to blueways.
Imagine the Future, Realize the Vision
Life at the water’s edge is rapidly changing. The impacts of new technology, patterns of urban development, and globalization are redefining global logistics, and while some waterfront cities will thrive as ports and grow under these new conditions, others will need to evolve in order to survive and succeed….
The Rondout Creek today, lapping at the shores of Kingston, and of the Sleightsburg and Connelly hamlets in the town of Esopus, is in the flux of significant change. The waterfront as it is, represents an amalgam of positives and negatives. At its best, it boasts commercial shipyards, marinas, marine services businesses; institutions including the Hudson River Maritime Museum (and its Wooden Boat School and Shipyard); along with wetlands, open space, promenades, magnificent scenery and recreational possibilities. But at its worst, it is marred by brownfields, combined sewer overflows, and a variety of non-waterfront dependent uses that make poor use of water accessibility, marine transportation and port possibilities.
Most unfortunate of all: existing development plans lack a sweeping vision and often fail to take a future into account dominated by climate impacts, including severe storm surges, along with a steady sea and river level rise that will soon inundate portions of the currently existing Roundout and Hudson shoreline. Plans that fail to take climate change into account will drown in insolvency.
Over the past few years, a variety of plans and proposals have been put forward, each with very good elements, but also with gaps and flaws:
The City of Kingston and town Esopus are working with stakeholders and partners on The Rondout Waterfront to improve the resiliency and sustainability of the shoreline, implement an economic development strategy, and cultivate better access to the river via waterfront parks and open space for people on foot, on bicycle, and launching boats.
The Town of Esopus, is also working on a comprehensive plan that contains waterfront goals for the Wallkill, Hudson, and Rondout Creek Waterfront access and usage. These plans include development policies to restore, revitalize, and redevelop deteriorated and underutilized waterfront areas for commercial, industrial, cultural, recreational, and other uses.
However, importantly, very few if any of these proposals are in the implementation phase. And little of the available climate and sea level change studies and data are included in the port plans as presently formulated.
Rondout Riverport 2040 is unique in that it takes likely forecasts of the near future fully into account; it is a proposal that offers a hard, sober look at the realities of our climate change, alternative energy, and global supply chain future.
But for this plan to be realized, stakeholders, partners, and existing maritime institutions will need to buy-in now and participate actively in the planning and implementation process. Those institutions include, but are not limited to the Center for Post Carbon Logistics, the Schooner Apollonia, the Hudson River Maritime Museum’s solar electric passenger vessel Solaris, the Hudson River Sloop Clearwater, Sustainable Hudson Valley’s Regional Hudson Valley Climate Action Plan, The Riverport Coalition, and the Beacon Sloop Club’s Woody Guthrie. This diverse partnership must also be inclusive of public and private landowners, as well as land conservation organizations, including but not limited to the Kingston Land Trust, Scenic Hudson, and the hundreds of Hudson Valley organizations and individuals working for a more resilient and sustainable future.
Threat Assessment:
A first step: the Rondout communities must start by objectively assessing near future threats and evaluating our greatest points of weakness — assessing local infrastructure, and economic, political, social, and environmental structures. Rondout Riverport communities will especially need to fortify against the economic and environmental storms to come by doing work to enrich our towns and neighborhoods today, reducing risk and enhancing resilience for the future, by:
creating “resiliency hubs”, equipped to deal with sudden health, environmental, or weather / climate disasters, and develop strategies for proactive risk minimization and management;
using the tools of community “placemaking” to include the broadest possible participation in planning for, and developing, a working and recreational Rondout Waterfront and Port that will be operational and adaptable for the first half of the 21st century and beyond.
develop an education and training center for rapid proliferation of all these practices and trades in and beyond the Rondout Riverport
Placemaking — a pathway to the future:
Rondout Riverport 2040 will engender the Hudson Valley’s can-do spirit, harness our region’s inventiveness and our love of innovation, allowing our region and its people to not merely survive in the Post Carbon era, but thrive. And why not? After all, our region gave the world the steamboat, the telegraph, the submarine, FM radio, the first interactive software systems vital to today’s computers, and even potato chips. We seem born to invent the future!
Roundout Riverport 2040, by cooperating fully with all partners, will incorporate the best elements of existing planning documents; undertake a thorough land use, flood plain, and sea level rise analysis; examine current trends in shipping, energy, food security and port management; assess the best climate change and economic forecasts; and create an adaptive re-use Waterfront plan that incorporates the best of 19th, 20th, and 21st century technologies.
But this process will do far more than construct a vision. It must ensure that this vision is aligned with community values and sensibilities. To achieve this goal, we will use a placemaking approach as the structure for addressing critical questions about how best to mobilize the many assets of the Rondout Riverport in a coordinated fashion to meet community needs and attract diverse resources.
Placemaking is a holistic approach for considering the possibilities inherent in a locality by identifying a unifying purpose or theme — the essence of the place — and then identifying multiple strategies, at multiple scales, that relate to this theme, providing direction for achieving unified objectives and goals.
The foundation of placemaking is a focus on the many natural benefits of public space – in order to achieve the most comprehensive multiple uses, aesthetic benefits, connectivity, and social interaction. This process will generate key insights into how state, municipal, and county government agencies can best coordinate implementation efforts and find the resources to address problems and opportunities.
The placemaking approach will catalyze the integration of the many layers of conceptual planning already underway by various entities, aiding in the development of collaborative strategies for redeveloping the Port so that it serves multiple river uses and users.
The partners will work with, and gain consensus from, other Hudson Valley organizations to begin realizing the Rondout Riverport 2040 vision. A network of groups, including the Boatbuilders, Sustainable Hudson Valley Senior Fellows, Good Work Institute Fellows Network, C4PCL’s advisory board, plus staff and contractors, will provide intensive inputs and garner resources to translate the partners’ vision into robust planning during the rest of 2020 and 2021.
It is now past time to implement the many excellent ideas generated by our communities and their planners. It is time to bring the planning process forward into those communities. The path to a bright, sustainable future starts with research and engagement, and placemaking in Kingston and Espopus and on the Roundout Waterfront.
Regenerative Port
The source of our inspiration and empowerment will be our region’s shorefront and its waters, its hands, and minds. Here the best and brightest, urban and rural, “Slow” technologists, craftspeople, educators, planners, artists, schoolchildren, and seniors, can come together to remake our post-modern world. Here we’ll find new, efficient, green ways to produce energy; revolutionize agriculture to assure food security; reinvent transportation on land and water to move goods up and down our Hudson and to prosper in the challenging times ahead. Here we’ll help birth a new, inclusive regional economy that rewards all citizens, while celebrating democracy, cooperation, and public service.
Picture a Roundout Port in which every day, diverse participants — Transition and Permaculture practitioners, boat and ship builders, coopers, riggers, longshore workers, managers, carpenters, commercial fishermen, millwrights, engineers, potters, community development financial institutions, weavers, woodworkers, planners, architects, writers, historians, archivists, computer and IT experts, and people from wildly diverse vocations — will all merge and meld their talents to realize the vision of Rondout Riverport 2040.
In implementing the Rondout Riverport vision, we’ll move via hands-on experiences beyond spin and abstract buzzwords – past “environmental”, or “sustainable”, or “eco” this or that. Here, our work will focus on a single place and on a Just Transition away from fossil fuels. The times ahead will give new meaning to the word deckhand, as all join together to create the naturally viable means for living and being in community in the 21st Century — as we prosper economically, emotionally, and spiritually, beyond the realm of coal and oil.
The next step will be one of the most critical: to gather all our research and data, analyze it, and commit to honestly confronting challenges, while also boldly embracing opportunities and possibilities. We must move forward quickly and vigorously — climate change and economic change are moving ahead swiftly. We must inspire individuals, communities, local leaders, and City, County, and State officials to commit to the creation of a thriving, innovative Rondout Riverport and Working Waterfront, as a gateway to a vast system of sustainable blue waterways that together will enable a Post Carbon Future full of hope and opportunity.
[1] A trading house an exporter, importer and also a trader that purchases and sells products for other businesses. Trading houses provide a service for businesses that want international trade experts to receive or deliver goods or services.
“Moving goods and people from place to place in a carbon constrained future will be dependent on sailing vessels, hybrid/fossil free electric ships, and people/electric, powered transport for first and last mile logistics. “
New York’s Working Waterfront has long been a key contributor to the region’s
financial wellbeing and our nation’s economy. But, in a carbon constrained
future, how will goods and people be moved from place to place, and what role
will The City’s Waterfront play in this vision? How should we meet the looming
challenges of climate change, rising sea level, aging infrastructure, changes
to global shipping patterns, threats to food security, and the risks these
changes bring to New York’s financial sector?
The biggest question of all: How do we address this daunting multitude
of challenges and turn them into opportunities for transforming the waterfront
and Port in order to effectively and efficiently serve our regional and
national economy far into the future?
“Life at the water’s edge is rapidly changing. The impacts of new technology, patterns of urban development, and globalization are redefining global logistics, and while some waterfront cities will thrive as ports and grow under these new conditions, others will need to evolve in order to survive and succeed…. How will New York re-invent its waterfront?”
If present trends continue, New York Harbor will need to be transformed into a hub of the spokes for “short sea shipping” (any movement of freight by water that doesn’t cross oceans such as freight ferries, short-haul barges and various other marine vessels). rather than serving as an unsustainable container cargo port. The good news: the New York metro region has an extensive network of waterways, and so is very well suited for the short sea shipping mode of freight transport. Moreover, public agencies and private companies are investigating the potential economic and environmental benefits of transferring more cargo from road to sea.
As New York moves forward to the working waterfront of tomorrow, the constraints, and in some cases the advantages, of smaller and (s)lower tech modes of transport must be considered; allowing for the integration of slowtech transport into harbor infrastructure to support these imminent changes.
If the New York
port is to thrive, 19th, 20th, and 21st Century
technology must meld seamlessly into new, mid-century methods of transport, also
with an emphasis on what might seem like bygone, but productive, methodologies
in order to become more self-sufficient and sustainable.
To offer just one example, ships of all sorts will need to be built (and rebuilt) locally, from locally sourced or recycled materials, and be crewed by locally trained seafarers, in order to adjust to declines in these resources globally, declines brought on by the climate crisis and social upheaval abroad. These new vessels will likely be very different than the ones built today
As fossil fuels become more expensive and are restricted by climate change policy, port infrastructure will need to be part of a carbon neutral trading network that links us to the region and the world. The good news: our port is well positioned to become a laboratory for maritime innovation, offering competitive freight rates on 18th and 19th Century shipping routes enhanced by 21st Century technology.
A Port Facing
the Greatest Challenges in Its History
Our world is now convulsed by converging crises of a magnitude never seen by humanity: climate change and sea level rise, global economic instability, and peak everything. Add to these threats the risk of wars over natural resources, climate migration, failure of aging and over stressed infrastructure, unstable economies, and the erosion of community values. Each of these crises presents particularly thorny problems for New York City, its Port, and the region. Challenges which also offer opportunities.
New York City owes its very existence to its location on one of the greatest ice-free harbors on earth; in turn, that great urban powerhouse was built on its Harbor and shipping industry. But as new threats loom, our aging Port has devolved into a dangerously tenuous lifeline to the world overseas.
Mid-west drought
Today, the
far-flung international trade network that once pumped vibrant economic life
into New York City and our region is threatened with collapse as imported
natural resources grow more expensive, carbon pollution from shipping grows
much worse, and the fossil fuels needed to transport goods become increasingly
scarce and costly. Spiralling petroleum costs, and turmoil in nations upon which
we rely for imported goods could snap our international lifeline at any time.
The present system
is unsustainable, so we must prepare to transform it, and we must move quickly
It’s important to understand that all of the many crises we face are
intimately linked to each other, and magnify each other, impacting our port’s
future. Just a few troubling examples:
A severe long-term drought in the American Midwest, could cut off our region’s supply of wheat, corn and soy, causing food shortages and a financial calamity.
Peak oil requires that we drill for fossil fuels in increasingly extreme landscapes, like the deep-water Gulf of Mexico, prone to more and more powerful hurricanes, or by using hydraulic fracturing that will likely contaminate groundwater in the heart of our regional foodshed, and the grain belt. Sudden price surges would impact shipping and our Port.
Our sprawling global oil pipeline stretches around the globe, making us vulnerable and dependent on volatile states prone to war, revolution, and migratory upheaval. Again, such conflicts could seriously impact global commerce and our Port.
An economic crash or a financially-sapping resource war abroad, could wreck our balance of trade and shatter our tax base, then making it fiscally impossible to adapt our infrastructure to accommodate climate change impacts, which would lead to more unpreparedness and economic hardship.
Meanwhile, poor harbor planning, and inappropriate non-water-dependent development along New York City’s flood prone waterfront could seriously hamper adaptation to these many crises.
The accumulation and interaction of such shocks could be catastrophic if
we do not prepare
Despite its present dominance, the New York Port and its current maritime logistics system remains fragile. It is reliant upon carbon-based fuels, driving internal combustion engines. This local fossil fuel-dependent system is interwoven into long-distance, globalized trade and is designed for Just-In-Time delivery. Importantly, it also depends upon a financial accounting system that avoids paying for negative environmental and social externalities such as global warming, environmental pollution, and sea level rise. But the bill for these negative externalities is coming due now and will be paid by our Port, our city, and our regional economy for decades to come if we don’t prepare to prevent that from happening.
Here is a stark reality that we must deal with if
we are to thrive as a 21st Century Port: The
World Economic Forum determined in 2018 that if shipping were a country, it
would be the world’s sixth-biggest greenhouse gas emitter. Those maritime
emissions must be slashed, and soon. That being true, there are grave doubts
that our current shipping system can easily adapt to the policy and
technological shifts needed to successfully curb climate change. But failure to
adapt will be catastrophic for our Port: sea level rise alone could make sure
of that. So we have no choice: we must adapt.
The NY/NJ Port, New
York City’s working waterfront, and the greater region are at a crossroads, a
turning point. Looking forward rationally at all the indicators, our “business
as usual” carbon model, dependent on globe-trotting fossil fuel powered
container ships is putting us on course for systemic failure, marked by
cataclysmic energy shortages and infrastructure collapse, inundation from sea
level rise, financial meltdown and its attendant social disarray.
For those who think otherwise, our climate change future and its inevitable impacts were foreshadowed when Hurricane Sandy made landfall in New York City in October 2010, bringing with it a destructive wall of water that flooded subway tunnels and neighborhoods, cut off power to lower Manhattan, washed away century-old structures, cost the city millions, and left it forever changed. Sandy “was a turning point, that’s true not just for anticipating future Sandy-like storms, but also for predicting overall sea-level rise and such climate-change impacts as more frequent heat waves, which the New York City Panel on Climate Change projects will triple by the 2050s.”
Despite widespread agreement upon these future climate change-driven inevitabilities, the Port Authority — because it has invested so heavily in large container port infrastructure — continues to write “resiliency” reports, even as large container ships becomes increasingly obsolete — outdated dinosaurs at the end of a fossil fuel era.
It is also expected that Port Authority will continue to pour
millions of dollars into incremental “port improvements,” while failing to
address the inexorable rise of the sea and the eventual destruction of most of its
expensive industrial port infrastructure. Likewise, the Corps of Engineers,
despite some attempts at “greenwashing” remains in denial, as are the City of
New York, and the States of New York and New Jersey. Bold initiatives proposed
after Hurricane Sandy collect dust on agency bookshelves. Attempts at “pilot” projects related to climate
change protection and adaptation have so far been way too feeble, too small and
too late.
Meeting
Challenges of a 21st Century Port
If the Port (and the City and Region it serves) survives into the
second half of this century it will be
significantly smaller, more sustainable, and resilient with an emphasis on
adaptation, and realistic outcomes for the continuation of the transport of
goods and people.
The contemporary Port of NY/NJ is the largest
port on the East Coast and the third largest in the US. For the freight
offloaded at its facilities, our Port is just one stop in an extensive
intermodal distribution chain.
But here’s another important fact: we drastically underutilize an invaluable regional transportation resource: our local waterways. In New York City’s metro region, 80% of freight transport today is carried by truck, a practice that congests our highways, increases air pollution, and is entirely dependent on fossil fuels. In the context of a working waterfront of the second third of the 21st century, (electric) trucks and rail may continue to have relevance in city-to-city transport, but all large trucks will likely have necessarily disappeared from the urban core. Congestion, pollution, and quality of life issues make this inevitable. And Just in Time delivery will be replaced by Warehouse in Transit Logistics (WIT or Warehouse –in- transit” is the successor to JIT or just-in-time which is now selectively outdated. Many cargoes that speed along highways to spend days in a warehouse could as easily and more economically / beneficially move by water).
In the 18th, and 19th and
early 20th centuries, the Hudson River, the New York Harbor, and the NY/NJ Harbor
Estuary and its river tributaries served as a bustling network of marine highways
linking even the smallest communities to a web of regularly scheduled
commercial routes. Boats of all sizes met local cargo and passenger needs: schooners,
sloops, barges, and steamboats connected river town inhabitants. Farmers,
merchants, and oystermen relied on this vibrant and diverse fleet of vessels to
bring in supplies and deliver goods to market. The NY/NJ Harbor Estuary and its
tributaries — and the ships and boats sailing them — were vital and integral to
those who worked and lived along our inland waters.
Historically, thousands of vessels plied these marine highways,
sailing to and from The City’s Harbor to the farming communities of New
Jersey and the Hudson Valley, delivering fresh local farm produce, fish,
shellfish, and passengers to ports along the way.
Today, those marine highways
still exist, but thanks to the boom in highway construction in the mid-20th
Century, have fallen into deep neglect. They now need to be
reinvigorated. Injecting new life into these regional maritime trade
routes is far more than just a celebration of tradition. In a carbon
constrained future, sustainable water transport will be a necessity. As the climate crisis deepens, water-based low-or-no
carbon transportation routes could link communities throughout the region.
The rivers, bays, canals, and coasts of the Hudson Valley, NY
Harbor, and Mid-Atlantic region continue to be a marine highway today, but one
that is limited to deeply dredged channels leading to container ports and
fossil fuel and chemical tank farms.
In a carbon constrained future, we will need to return to our
region’s nautical roots and advocate for the maritime,
and for the “first and last mile technology” necessary for moving goods and
people from place to place minimizing carbon pollution, opting for existing and
emerging low carbon shipping and post carbon transportation businesses and
organizations.
Question: How can we rapidly develop a new approach to waterway transportation
logistics that is attentive to, and resilient to the climate emergency? And
under fast-evolving environmental and social conditions, how can we alter our
Port to sustain a vibrant economy and standard of living for ourselves and future
generations — one that is also equitable and inclusive?
Vision for a Working Waterfront
and NY Port in the Second Third of the 21st Century
Oddly enough, a vision for an efficient,
economically vibrant, post carbon working waterfront in the 2030s, ‘40s and ‘50s
will likely resemble the New York Harbor of the late 19th century,
rather than what we see today. The Harbor of the near future will need to link
not only to roadways and railways, but to our region’s marine highways, which
will carry massive amounts of cargo and people.
Shoreline infrastructure will have to scale down and increase in capacity, and be nimble in its response to rising sea levels and more violent storms. It will have to be accessible to smaller, more numerous vessels on a preserved and restored Working Waterfront that is socially and culturally integral to the communities and our ‘sense of place” and include:
Charging stations for electric and electric hybrid vessels, flood-proof storage and production facilities for biofuels like methane (from sewage treatment plants), biodiesel (from used fryer fat), and hydrogen (created from seawater while sailing vessels are underway).
Waterfront and flood proofed warehouses and trading houses, business that specializes in facilitating transactions between a home country and foreign countries. (A trading house is an exporter, importer and also a trader that purchases and sells products for other businesses. Trading houses provide a service for businesses that want international trade experts to receive or deliver goods or services).
Local ship and boat building and repair facilities to support a local fleet,
More accessible customs clearance areas,
More traditional break bulk cranes for bulk, palletized, and bagged cargo,
Cross-docking facilities for transfer of goods from larger ocean-going ships to smaller short sea shipping vessels, and for transfer to first and last mile providers, i.e. small sailing, rowing, hybrid vessels as well as people/electric powered small commercial trikes and wagons.
Access for docking of “historic” ships to enable the “new” traders and seafarer models for “preserving the tools and skills of the past to serve the future.”
To bring these infrastructure changes about, we
will need to immediately establish:
A new agreement with transport unions to allow ships to load and unload with their own equipment. Working with the Unions to hire and train more people for post carbon longshore work.
A partnership with the region’s Maritime Academies and the Harbor School to retrain mariners and for logistics careers for the new post carbon working waterfront; creating a maritime education center where professional practitioners and apprentices can participate in practical workshops to relearn maritime and Port skills of the past to serve the future.
An endowment for a new “sailor’s snug harbor for the “aged, decrepit and worn-out sailors”
An endowment for the preservation and utilization of traditional maritime skills and tools, and a traditional knowledge database, library, and pre/post carbon tool, technology, and machinery collection. This activity serves to preserve, restore and promote the re-use of traditional skills.
Establish a Sustainable Working Waterfront Toolkit—enumerating the historical and current uses and economics of New York’s waterfront. The toolkit must include legal, policy, and financing tools which river ports, blue highways and estuarine communities can use to preserve and enhance local and regional port facilities.
Create maritime mixed-use zones where public parks, walkways and bikeways are built in flood zones and are adjacent to and part of a working waterfront.
Advocate for a reduced, less intrusive regulatory role for the US Army Corps of Engineers. Instead, encourage funding to the Corps for partnerships with other agencies, non-profit organizations, and an engaged public for developing, and redeveloping, a sustainable NY Port in a carbon constrained future, including but not limited to working with NY/NJ Baykeeper, the billion oyster project, and the Hudson River Foundation to build oyster reefs for habitat improvement and shoreline protection.
The New Working Waterfront will also:
Create jobs in seafaring, logistics, ship building, harbor maintenance
and more.
Revitalize waterfront communities by preserving the working waterfront and
commercial enterprises, while providing more public access and recreation.
Improve regional food production and distribution, linking producers to
buyers.
Imagining our Working Waterfront, circa 2050
Put simply, the shift from road, rail, and
fossil fuel dependence, to dependence on our region’s extensive network of marine
highways in a low-or-no carbon era, is a “breeze.”
Water-based transportation is just about the
only form of transportation other than the bicycle that requires little or no
roadway maintenance. There are no surfaces to grade or pave, no tracks, no
bridges or trestles to care for. Of course, canals need to be restored and
preserved; navigation channels need to be marked with buoys; locks and
lighthouses need to be manned and maintained. But unlike motorway or railroad
maintenance, these activities don’t require a large industrial base, and are
far less energy-intensive than alternatives.
The 363-mile-long Erie Canal system, linking
the Atlantic Ocean with the Great Lakes, for example, has been continuously operational
and profitable since 1825. The cost of keeping it running is tiny compared to
the cost of equivalent highway mileage and with winters expected to be more
mild the canal may be open year round.
The Hudson, Long Island Sound, the Bays of New
York Harbor, and a significant number of natural and artificial waterways in
the US and Canada comprise the greatest set of transportation assets in the world.
Those marine highways will only see their status grow in a post carbon world —
and the NY/NJ Harbor area is especially blessed with such waterways.
Let’s imagine: It is a hot, humid, late autumn day in 2050. From a high floor in one of lower Manhattan’s surviving skyscrapers, a trading house ship spotter, sees the topmasts of a tall ship entering the Lower Bay. The watcher signals the pilot schooner on post off of what was once Sandy Hook, and waiting Tug Augustin Mouchot a solar powered tug are dispatched to tow the engineless sea-going square rigger to a berth in the new port in the recently completed Gowanus Bay and Erie Basin Harbor with its oyster encrusted seawall created by repurposing concrete and stone from waterfront buildings and piers inundated by rising seas over the last 30 years.
Clipper Ship
The ship, the Jorne Langelaan, named after the builder of the first of the post carbon Eco-Clippers, has its crew aloft putting a harbor furl on the hemp cloth sails. She carries a mixed cargo of Caribbean fair trade coffee and cocoa beans bound for the region’s roasters and chocolatiers as well as preserved tropical fruits and rum. The Langelaan is looking a little “worse for wear” having skirted the 5th named Atlantic storm of the season. But her New York trained crew of young men and women is in good spirits, looking forward to spending time ashore, and to a few drinks of brew, cider, and spirits locally made and delivered by sloop and schooner from around the region, and to a good meal at a cafe serving up dishes harvested from the Harbor’s new artisan fishery and from oyster beds in shallows created by submerged piers and streets.
A long shore crew,
warehouse workers, drovers and their electric assist people-powered tricycles and
wagons converge at the waterfront’s new storm-proofed floating dock — which
rises and falls with surging tides. Cargo surveyors assist with the loading of schooners.
Crews on solar electric canal barges and sloops make ready to transfer cargo
from the Langelaan to their holds,
and to carry that cargo to ports up and down the Hudson River, to the newly
opened Delaware and Raritan, and Delaware and Hudson Canals, coastal New
Jersey, Long Island, and New England.
The Pilot Schooner comes
alongside the Langelaan and the pilot
goes up the ladder to the helm to direct the square rigger to its destination. Customs
agents sail from Staten Island to clear the cargo.
A huge tarred manila hemp hawser
is passed to the ship from the tug and the last few miles to port pass under
the clipper’s hull. The docking pilot skillfully moves the ship to the dock
while the Clipper’s crew readies the ship’s gear, opening hatches, and starting
up a steam winch that will do most of the lifting. There are also floating
cargo cranes that can be used for cargo heavier or bulkier than can be handled
by the ship’s gear.
This (s)low tech port makes
the best use of tried and true 19th century technology, supported
with 21st century solar and battery electric gear and vehicles. More
people are at work on the waterfront than any time since the 1920s; there are
more warehouses and trading houses, ship building, repair facilities, and docking
facilities than at any time in New York’s nautical history.
Just behind the waterfront
are sail and rope makers utilizing New York hemp; forges and foundries using
concentrated solar heat to form steel and bronze fittings. Riggers are hard at
work in rope walks making running rigging and dock lines for the numerous
sailing ships. Dry docks and shipyards look out on bikeways and walkways
circumscribing the tidal flats from which hundreds of locals and tourists watch
the port activity — safe in the knowledge that food and goods continue to come
into the city, not “just in time,” but perhaps just enough.
This narrative offers a positive look forward at the New York Port at mid-century. But that optimistic future totally depends on the will to make it so. Should we pursue politics and policy as usual, we may face a grimmer New York waterfront in 2050: Abandoned, flooded, mouldering buildings and piers; failing, low-lying sewage treatment plants and electric utilities; climate change and rising sea-driven New York City migrants crowding upstate communities seeking food and shelter; a polluted, fish empty estuary as oil and chemical plants go underwater. Food and fuel become too expensive except for the very wealthy; Crime and violence escalating, as are protests and riots bordering on insurrection, hard for law enforcement to contain; The City becomes more and more ungovernable, and faces a dark future bounded by economic gloom and rising water.
The choice is ours. The
path to a bright, sustainable future starts with this process of city-wide
community engagement, and a research gathering effort that seeks input on a Working
Waterfront. A good first step is being taken to better inform the waterfront
planning process.
NY Port 2040
The next step will be even more critical: to
take all of the information gathered, and to commit to honestly confronting challenges,
while also boldly embracing opportunities and possibilities. We must move
forward quickly and vigorously, and we need to do more than just convene. We
must inspire individuals, communities, local leaders, city and state governments
to commit to creating a thriving, post carbon Working Waterfront. We must also commit to the creation of a network of sustainable blue
waterways in a region that advocates for a post carbon transition
that people will embrace as a collective adventure, as a common journey, as
something positive, and above all, as a future full of Hope.
Originally posted on the Archdruid Report now https://www.ecosophia.net/ by John Michael Greer, March 2014. Reprinted with permission of the author.
I have yet to hear anyone in the peak
oil blogosphere mention the name of Captain Gustaf Erikson of the Åland
Islands and his fleet of windjammers. For all I know, he’s been
completely forgotten now, his name and accomplishments packed away in the same
dustbin of forgotten history as solar steam-engine pioneer Augustin Mouchot,
his near contemporary. If so, it’s high time that his footsteps sounded again
on the quarterdeck of our collective imagination, because his story—and the
core insight that committed him to his lifelong struggle—both have plenty to
teach about the realities framing the future of technology in the wake of
today’s era of fossil-fueled abundance.
Erikson, born in 1872, grew up in a
seafaring family and went to sea as a ship’s boy at the age of nine. At 19 he
was the skipper of a coastal freighter working the Baltic and North Sea ports;
two years later he shipped out as mate on a windjammer for deepwater runs to
Chile and Australia, and eight years after that he was captain again, sailing
three- and four-masted cargo ships to the far reaches of the planet. A bad fall
from the rigging in 1913 left his right leg crippled, and he left the sea to
become a ship owner instead, buying the first of what would become the 20th
century’s last major fleet of wind powered commercial cargo vessels.
It’s too rarely remembered these days
that the arrival of steam power didn’t make commercial sailing vessels obsolete
across the board. The ability to chug along at eight knots or so without
benefit of wind was a major advantage in some contexts—naval vessels and
passenger transport, for example—but coal was never cheap, and the long
stretches between coaling stations on some of the world’s most important trade
routes meant that a significant fraction of a steamship’s total tonnage had to
be devoted to coal, cutting into the capacity to haul paying cargoes. For bulk
cargoes over long distances, in particular, sailing ships were a good deal more
economical all through the second half of the 19th century, and some runs
remained a paying proposition for sail well into the 20th.
That was the niche that the
windjammers of the era exploited. They were huge—up to 400 feet from stem to
stern—square-sided, steel-hulled ships, fitted out with more than an acre of
canvas and miles of steel-wire rigging. They could be crewed by a
few dozen sailors, and hauled prodigious cargoes: up to 8,000 tons
of Australian grain, Chilean nitrate—or, for that matter, coal; it was among
the ironies of the age that the coaling stations that allowed steamships to
refuel on long voyages were very often kept stocked by tall ships, which could
do the job more economically than steamships themselves could. The markets
where wind could outbid steam were lucrative enough that at the beginning of
the 20th century, there were still thousands of working windjammers hauling cargoes
across the world’s oceans.
That didn’t change until bunker oil
refined from petroleum ousted coal as the standard fuel for powered ships.
Petroleum products carry much more energy per pound than even the best grade of
coal, and the better grades of coal were beginning to run short and rise
accordingly in price well before the heyday of the windjammers was over. A
diesel-powered vessel had to refuel less often, devote less of its tonnage to
fuel, and cost much less to operate than its coal-fired equivalent. That’s why
Winston Churchill, as head of Britain’s Admiralty, ordered the entire British
Navy converted from coal to oil in the years just before the First World War,
and why coal-burning steamships became hard to find anywhere on the seven seas
once the petroleum revolution took place. That’s also why most windjammers went
out of use around the same time; they could compete against coal, but not
against dirt-cheap diesel fuel.
Gustav Erikson went into business as
a ship owner just as that transformation was getting under way. The rush to
diesel power allowed him to buy up windjammers at a fraction of their former
price—his first ship, a 1,500-ton bark, cost him less than $10,000, and the
pride of his fleet, the four-masted Herzogin Cecilie, set him back
only $20,000. A tight rein on operating expenses and a careful eye
on which routes were profitable kept his firm solidly in the black. The bread
and butter of his business came from shipping wheat from southern Australia to
Europe; Erikson’s fleet and the few other windjammers still in the running
would leave European ports in the northern hemisphere’s autumn and sail for
Spencer Gulf on Australia’s southern coast, load up with thousands of tons of
wheat, and then race each other home, arriving in the spring—a good skipper
with a good crew could make the return trip in less than 100 days, hitting
speeds upwards of 15 knots when the winds were right.
There was money to be made that way,
but Erikson’s commitment to the windjammers wasn’t just a matter of profit. A
sentimental attachment to tall ships was arguably part of the equation, but
there was another factor as well. In his latter years, Erikson was fond of
telling anyone who would listen that a new golden age for sailing ships was on
the horizon: sooner or later, he insisted, the world’s supply of
coal and oil would run out, steam and diesel engines would become so many lumps
of metal fit only for salvage, and those who still knew how to haul freight
across the ocean with only the wind for power would have the seas, and the
world’s cargoes, all to themselves.
Those few books that mention Erikson
at all like to portray him as the last holdout of a departed age, a man born
after his time. On the contrary, he was born before his time, and lived too soon.
When he died in 1947, the industrial world’s first round of energy crises were
still a quarter century away, and only a few lonely prophets had begun to grasp
the absurdity of trying to build an enduring civilization on the
ever-accelerating consumption of a finite and irreplaceable fuel supply. He had
hoped that his sons would keep the windjammers running, and finish the task of
getting the traditions and technology of the tall ships through the age of
fossil fuels and into the hands of the seafarers of the future. I’m sorry to
say that that didn’t happen; the profits to be made from modern freighters were
too tempting, and once the old man was gone, his heirs sold off the windjammers
and replaced them with diesel-powered craft.
Erikson’s story is worth remembering,
though, and not simply because he was an early prophet of what we now call peak
oil. He was also one of the very first people in our age to see past the
mythology of technological progress that dominated the collective imagination
of his time and ours, and glimpse the potentials of one of the core strategies
this blog has been advocating for the last eight years.
We can use the example that would
have been dearest to his heart, the old technology of windpowered maritime
cargo transport, to explore those potentials. To begin with, it’s crucial to
remember that the only thing that made tall ships obsolete as a transport
technology was cheap abundant petroleum. The age of coal-powered steamships
left plenty of market niches in which windjammers were economically more viable
than steamers. The difference, as already noted, was a matter of
energy density—that’s the technical term for how much energy you get out of
each pound of fuel; the best grades of coal have only about half the energy
density of petroleum distillates, and as you go down the scale of coal grades,
energy density drops steadily. The brown coal that’s commonly used
for fuel these days provides, per pound, rather less than a quarter the heat
energy you get from a comparable weight of bunker oil.
As the world’s petroleum reserves
keep sliding down the remorseless curve of depletion, in turn, the price of
bunker oil—like that of all other petroleum products—will continue to move
raggedly upward. If Erikson’s tall ships were still in service, it’s quite
possible that they would already be expanding their market share; as it is,
it’s going to be a while yet before rising fuel costs will make it economical
for shipping firms to start investing in the construction of a new generation of
windjammers. Nonetheless, as the price of bunker oil keeps rising,
it’s eventually going to cross the line at which sail becomes the more
profitable option, and when that happens, those firms that invest in tall ships
will profit at the expense of their old-fahioned, oil-burning rivals.
Yes, I’m aware that this last claim
flies in the face of one of the most pervasive superstitions of our time, the
faith-based insistence that whatever technology we happen to use today must
always and forever be better, in every sense but a purely sentimental one, than
whatever technology it replaced. The fact remains that what made diesel-powered
maritime transport standard across the world’s oceans was not some abstract
superiority of bunker oil over wind and canvas, but the simple reality that for
a while, during the heyday of cheap abundant petroleum,
diesel-powered freighters were more profitable to operate than any of the other
options. It was always a matter of economics, and as petroleum depletion
tilts the playing field the other way, the economics will change accordingly.
All else being equal, if a shipping
company can make larger profits moving cargoes by sailing ships than by diesel
freighters, coal-burning steamships, or some other option, the sailing ships will
get the business and the other options will be left to rust in port. It really
is that simple. The point at which sailing vessels become economically viable,
in turn, is determined partly by fuel prices and partly by the cost of building
and outfitting a new generation of sailing ships. Erikson’s plan was to do an
end run around the second half of that equation, by keeping a working fleet of
windjammers in operation on niche routes until rising fuel prices made it
profitable to expand into other markets. Since that didn’t happen, the lag time
will be significantly longer, and bunker fuel may have to price itself entirely
out of certain markets—causing significant disruptions to maritime trade and to
national and regional economies—before it makes economic sense to start
building windjammers again.
It’s a source of wry amusement to me
that when the prospect of sail transport gets raised, even in the greenest of
peak oil circles, the immediate reaction from most people is to try to find
some way to smuggle engines back onto the tall ships. Here again, though, the
issue that matters is economics, not our current superstitious reverence for
loud metal objects. There were plenty of ships in the 19th century that
combined steam engines and sails in various combinations, and plenty of ships
in the early 20th century that combined diesel engines and sails the same
way. Windjammers powered by sails alone were more economical than
either of these for long-range bulk transport, because engines and their fuel
supplies cost money, they take up tonnage that can otherwise be used for paying
cargo, and their fuel costs cut substantially into profits as well.
For that matter, I’ve speculated in
posts here about the possibility that Augustin Mouchot’s solar steam engines, or
something like them, could be used as a backup power source for the windjammers
of the de-industrial future. It’s interesting to note that the use of renewable
energy sources for shipping in Erikson’s time wasn’t limited to the motive
power provided by sails; coastal freighters of the kind Erikson skippered when
he was nineteen were called “onkers” in Baltic Sea slang, because their
windmill-powered deck pumps made a repetitive “onk-urrr, onk-urrr” noise.
Still, the same rule applies; enticing as it might be to imagine sailors on a
becalmed windjammer hauling the wooden cover off a solar steam generator,
expanding the folding reflector, and sending steam down belowdecks to drive a
propeller, whether such a technology came into use would depend on whether the
cost of buying and installing a solar steam engine, and the lost earning
capacity due to hold space being taken up by the engine, was less than the
profit to be made by getting to port a few days sooner.
Are there applications where engines
are worth having despite their drawbacks? Of course. Unless the price of
biodiesel ends up at astronomical levels, or the disruptions ahead along the
curve of the Long Descent cause diesel technology to be lost entirely, tugboats
will probably have diesel engines for the imaginable future, and so will naval
vessels; the number of major naval battles won or lost in the days of sail
because the wind blew one way or another will doubtless be on the minds of many
as the age of petroleum winds down. Barring a complete collapse in technology,
in turn, naval vessels will no doubt still be made of steel—once cannons
started firing explosive shells instead of solid shot, wooden ships became
deathtraps in naval combat—but most others won’t be; large-scale steel
production requires ample supplies of coke, which is produced by roasting coal,
and depletion of coal supplies in a postpetroleum future guarantees that steel
will be much more expensive compared to other materials than it is today, or
than it was during the heyday of the windjammers.
Note that here again, the limits to
technology and resource use are far more likely to be economic than technical.
In purely technical terms, a maritime nation could put much of its arable land
into oil crops and use that to keep its merchant marine fueled with biodiesel.
In economic terms, that’s a nonstarter, since the advantages to be gained by it
are much smaller than the social and financial costs that would be imposed by
the increase in costs for food, animal fodder, and all other agricultural products.
In the same way, the technical ability to build an all-steel merchant fleet
will likely still exist straight through the de-industrial future; what won’t exist is the ability to do
so without facing prompt bankruptcy. That’s what happens when you have to live
on the product of each year’s sunlight, rather than drawing down half a billion
years of fossil photosynthesis: there are hard economic limits to
how much of anything you can produce, and increasing production of one thing
pretty consistently requires cutting production of something else. People in
today’s industrial world don’t have to think like that, but their descendants
in the de-industrial world will either
learn how to do so or perish.
This point deserves careful study, as
it’s almost always missed by people trying to think their way through the
technological consequences of the de-industrial future. One reader of mine who objected to
talk about abandoned technologies in a previous post quoted with approval the
claim, made on another website, that if a de-industrial society can make one gallon of biodiesel, it
can make as many thousands or millions of gallons as it
wants. Technically, maybe; economically, not a
chance. It’s as though you made $500 a week and someone claimed you
could buy as many bottles of $100-a-bottle scotch as you wanted; in any given
week, your ability to buy expensive scotch would be limited by your need to
meet other expenses such as food and rent, and some purchase plans would be out
of reach even if you ignored all those other expenses and spent your entire
paycheck at the liquor store. The same rule applies to societies that don’t
have the windfall of fossil fuels at their disposal—and once we finish burning
through the fossil fuels we can afford to extract, every human society for the
rest of our species’ time on earth will be effectively described in those
terms.
The one readily available way around
the harsh economic impacts of fossil fuel depletion is the one that Gunnar
Erikson tried, but did not live to complete—the strategy of keeping an older
technology in use, or bringing a defunct technology back into service, while
there’s still enough wealth sloshing across the decks of the industrial economy
to make it relatively easy to do so. I’ve suggested above that if
his firm had kept the windjammers sailing, scraping out a living on whatever
narrow market niche they could find, the rising cost of bunker oil might
already have made it profitable to expand into new niches; there wouldn’t have
been the additional challenge of finding the money to build new windjammers
from the keel up, train crews to sail them, and get ships and crews through the
learning curve that’s inevitably a part of bringing an unfamiliar technology on
line.
That same principle has been central
to quite a few of this blog’s projects. One small example is the encouragement
I’ve tried to give to the rediscovery of the slide rule as an effective
calculating device. There are still plenty of people alive today who know how
to use slide rules, plenty of books that teach how to crunch numbers with a
slipstick, and plenty of slide rules around. A century down the line, when
slide rules will almost certainly be much more economically viable than pocket
calculators, those helpful conditions might not be in place—but if people take
up slide rules now for much the same reasons that Erikson kept the tall ships
sailing, and make an effort to pass skills and slipsticks on to another
generation, no one will have to revive or reinvent a dead technology in order
to have quick accurate calculations for practical tasks such as engineering,
salvage, and renewable energy technology.
The collection of sustainable-living
skills I somewhat jocularly termed “green wizardry,” which I learned back in
the heyday of the appropriate tech movement in the late 1970s and early 1980s,
passed on to the readers of this blog in a series of posts a couple of years
ago, and have now explored in book form as well, is another case in point. Some of
that knowledge, more of the attitudes that undergirded it, and nearly all the
small-scale, hands-on, basement-workshop sensibility of the movement in
question has vanished from our collective consciousness in the years since the
Reagan-Thatcher counterrevolution foreclosed any hope of a viable future for
the industrial world. There are still enough books on appropriate tech
gathering dust in used book shops, and enough in the way of living memory among
those of us who were there, to make it possible to recover those things;
another generation and that hope would have gone out the window.
There are plenty of other
possibilities along the same lines. For that matter, it’s by no means
unreasonable to plan on investing in technologies that may not be able to
survive all the way through the decline and fall of the industrial age, if
those technologies can help cushion the way down. Whether or not it will still
be possible to manufacture PV cells at the bottom of the de-industrial dark
ages, as I’ve been pointing out since
the earliest days of this blog,
getting them in place now on a home or local community scale is likely to pay
off handsomely when grid-based electricity becomes unreliable, as it
will. The modest amounts of electricity you can expect to get from
this and other renewable sources can provide critical services (for example,
refrigeration and long-distance communication) that will be worth having as the
Long Descent unwinds.
That said, all such strategies depend on having
enough economic surplus on hand to get useful technologies in place before the
darkness closes in. As things stand right now, as many of my readers will have
had opportunity to notice already, that surplus is trickling away. Those of us
who want to help make a contribution to the future along those lines had better
get a move on.